Improvement of DMFC Electrode Kinetics by Using Nanohorns Catalyst Support

Article Preview

Abstract:

One of the factors limiting direct methanol fuel cells (DMFC) performance is the slow kinetics of methanol oxidation at the anode. The importance of the catalyst support for fuel cells has been recognized and different forms of carbon have been suggested. Single wall nanohorns (SWNH) are a new class of carbon with a similar graphitic structure of carbon nanotubes. They are self-assembling materials that produce aggregates of about 100 nm. In the present study, the comparison of the performance of a DMFC equipped with electrocatalysts supported on a commercial carbon black and on SWNH was carried out. The SWNH were synthesized by the arc discharge method in air. The deposition of the Pt and Pt/Ru catalysts on the carbon supports was accomplished by using ethylene glycol as reducing agent. The synthesized catalyst nanoparticles have a very small diameter size (ca. 2.5 nm) and they are uniformly distributed on both carbon supports. The supported electrode catalysts were tested in a DMFC and results indicate that employing SWNH is very promising showing catalytic activities 60 % higher.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1106-1111

Citation:

Online since:

January 2010

Export:

Price:

[1] S. K. Kamarudin, W. R. Duad, S. L. Ho and U. A. Hasran: J. Power Sources Vol. 163 (2007), p.743.

Google Scholar

[2] Information accessed February 2009 on http: /ec. europa. eu/research/energy/pdf/efchp_fuelcell28. pdf.

Google Scholar

[3] J. F. Shen, Y. Z. Hua, C. Li, C. Qin and M. X. Ye: Electrochimica Acta Vol. 53 (2008), p.7276.

Google Scholar

[4] J. J. Wang, G. P. Yin, G. J. Wang, Z. B. Wang and Y. Z. Gao: Electrochem. Communications Vol. 10 (2008), p.831.

Google Scholar

[5] H. B. Zhao, L. Li, J. Yang, Y. M. Zhang and H. Li: Electrochem. Communications Vol. 10 (2008), p.876.

Google Scholar

[6] W. Z. Li, X. Wang, Z. W. Chen, M. Waje and Y. S. Yan: J. Phys. Chem. B Vol. 110 (2006), p.15353.

Google Scholar

[7] A. L. Ocampo, M. Miranda-Hernandez, J. Morgado, J. A. Montoya and P. J. Sebastian: J. Power Sources Vol. 160 (2006), p.915.

Google Scholar

[8] N. Sano, Y. Kimura and T. Suzuki: J. Mat. Chem. Vol. 18 (2008), p.1555.

Google Scholar

[9] T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi, Y. Kubo, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka and S. Iijima: Physica B (2002), p.124.

DOI: 10.1016/s0921-4526(02)00871-2

Google Scholar

[10] I. Robel, G. Girishkumar, B. A. Bunker, P. V. Kamat and K. Vinodgopal: Appl. Phys. Lett. Vol. 88 (2006), p.3.

Google Scholar

[11] S. Utsumi, J. Miyawaki, H. Tanaka, Y. Hattori, T. Itoi, N. Ichikuni, H. Kanoh, M. Yudasaka, S. Iijima and K. Kaneko: J. Phys. Chem. B Vol. 109 (2005), p.14319.

DOI: 10.1021/jp0512661

Google Scholar

[12] Information accessed February 2009 on http: /www. smalltimes. com/Articles/Article_Display. cfm?ARTICLE_ID=268624&p=109.

Google Scholar

[13] R. Yuge, T. Ichihashi, Y. Shimakawa, Y. Kubo, M. Yudasaka and S. Iijima: Adv. Mater. Vol. 16 (2004), p.1420.

DOI: 10.1002/adma.200400130

Google Scholar

[14] D. M. Gattia, M. V. Antisari and R. Marazzi: Nanotechnology Vol. 18 (2007), p.7.

Google Scholar

[15] T. Azami, D. Kasuya, R. Yuge, M. Yudasaka, S. Iijima, T. Yoshitake and Y. Kubo: J. Phys. Chem. C Vol. 112 (2008), p.1330.

DOI: 10.1021/jp076365o

Google Scholar