Modeling of Non-Stationary Heating of Steel Plates with Fire-Protective Coatings in Ansys under the Conditions of Hydrocarbon Fire Temperature Mode

Article Preview

Abstract:

The results of the experimental determination of temperature from a non-heating surface of steel plates with a fire-protective coating under conditions of fire exposure under the hydrocarbon fire temperature regime are presented. A calculated finite element model of the system “steel plate-flame retardant” was constructed to simulate the non-stationary heating of such a system in the ANSYS R17.1 software complex. The reliability of the numerical simulation results is estimated by real test, the adequacy of the developed model to the real processes occurring when heating the steel plates with fire-protective coating under the conditions of hydrocarbon fire temperature mode is made.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

514-523

Citation:

Online since:

July 2021

Export:

Price:

* - Corresponding Author

[1] S.V. Novak, Obgruntuvannia parametriv zrazkiv dlia eksperymentalnoho vyznachennia temperatury stalevykh plastyn z vohnezakhysnym pokryttiam v umovakh vohnevoho vplyvu za standartnym temperaturnym rezhymom pozhezhi, Naukovyi visnyk: Tsyvilnyi zakhyst ta pozhezhna bezpeka. 2 (2) (2016) 18 – 23.

Google Scholar

[2] Yu.I. Nemchynov, V.H. Poklonskyi, Kh.Z. Baitala ta [in.], Doslidzhennia vohnestiikosti budivelnykh konstruktsii, Nauka ta budivnytstvo. 2 (2014) 11−16.

Google Scholar

[3] V.H. Poklonskyi, O.A. Fesenko, Kh.Z. Baitala ta [in.], Rozrakhunkovi metody otsinky vohnestiikosti budivelnykh konstruktsii za Yevrokodamy, Budivelni konstruktsii. (2016) 380–389.

Google Scholar

[4] I.V. Abramov, M.V. Gravit, E.I. Gumerova, Povyshenie predelov ognestoykosti sudovykh i stroitelnykh konstruktsiy pri uglevodorodnom temperaturnom rezhime, Gazovaya promyshlennost. 5 (2018) 108–117.

Google Scholar

[5] J.K. Paik, J. Czujko, Assessment of hydrocarbon explosion and fire risks in offshore installations: Recent advances and future trends, IES Journal Part A: Civil and Structural Engineering. 4 (2016) 167–179.

DOI: 10.1080/19373260.2011.593345

Google Scholar

[6] A. Kovalov, Y. Otrosh, S. Vedula, О. Danilin, Т. Kovalevska, Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 3 (2019) 46–53.

DOI: 10.29202/nvngu/2019-3/9

Google Scholar

[7] Y. Otrosh, O. Semkiv, E. Rybka and A. Kovalov, About need of calculations for the steel framework building in temperature influences conditions, IOP Conf. Series: Materials Science and Engineering. 708 (2019) 012065.

DOI: 10.1088/1757-899x/708/1/012065

Google Scholar

[8] A.I. Kovalov, Ye.V. Kachkar, N.V. Zobenko [ta in.], Eksperymentalne doslidzhennia vohnezakhysnoi zdatnosti pokryttia «Amotherm Steel Wb» pry temperaturnomu rezhymovi vuhlevodnevoi pozhezhi, Pozhezhna bezpeka: teoriia i praktyka. 17 (2014) 53–60.

Google Scholar

[9] A.A. Boeva, V.Ya. Prorok, V.Ya. Trofimets, Issledovanie ekspluatatsionnykh kharakteristik modifitsirovannykh vspuchivayushchikhsya ognezashchitnykh sostavov v usloviyakh goreniya uglevodorodov, Problemy upravleniya riskami v tekhnosfere. 2 (2017) 96–102.

Google Scholar

[10] A. Vasilchenko, Y. Otrosh, N. Adamenko, E. Doronin and A. Kovalov, Feature of fire resistance calculation of steel structures with intumescent coating, MATEC Web of Conferences. 230 (2018) 02036.

DOI: 10.1051/matecconf/201823002036

Google Scholar

[11] Sotnik, N.I., Khovanskyy, S.A., Panchenko, V.A., Grechka, I.P., Maksimova, M.A. Simulation of the thermal state of the premises with the heating system «heat-insulated floor». Eastern-European Journal of Enterprise Technologies. 5 (78) (2015) 22-27.

DOI: 10.15587/1729-4061.2015.56647

Google Scholar

[12] DSTU-N-P B V.1.1–29:2010, Zakhyst vid pozhezhi. Vohnezakhysne obrobliannia budivelnykh konstruktsii. Zahalni vymohy ta metody kontroliuvannia, Minrehionbud Ukrainy. (2011) 9.

Google Scholar

[13] DSTU-N B V.2.6–211:2016, Proektuvannia stalevykh konstruktsii. Rozrakhunok konstruktsii na vohnestiikist,. Minrehion Ukrainy. (2016) 147.

Google Scholar

[14] V. Andronov, B. Pospelov, E. Rybka, Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects, Eastern-European Journal of Enterprise Technologies. Vol. 4, No. 5–82 (2016) 38–44.

DOI: 10.15587/1729-4061.2016.75063

Google Scholar

[15] Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., & Venzhego, G. Methodology for Calculating the Technical State of a Reinforced-Concrete Fragment in a Building Influenced by High Temperature. In Materials Science Forum. Trans Tech Publications Ltd. 1006 (2020) 166-172.

DOI: 10.4028/www.scientific.net/msf.1006.166

Google Scholar

[16] Kovalov A., Otrosh Y., Rybka E., Kovalevska T., Togobytska V. and Rolin I. Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. In Materials Science Forum. Trans Tech Publications Ltd. 1006 (2020) 179-184.

DOI: 10.4028/www.scientific.net/msf.1006.179

Google Scholar