An Experimental Study on Elastic and Strength Properties of Addictively-Manufactured Plastic Materials

Article Preview

Abstract:

Additive manufacturing technologies continue to develop extremely fast. Their opportunity of reproducing any given complex geometric form they superior to traditional production technologies. Despite the rapid development and distribution, there are still areas that require special attention for the study of the behavior of materials for 3D printing. This work presents method of defining mechanical property of PLA plastic for 3D printed parts. For this, a full-scale experiment was carried out using specimens created by 3D printing. After carrying out the tensile test, the tensile diagram was determined.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

162-167

Citation:

Online since:

July 2021

Export:

Price:

* - Corresponding Author

[1] W. Aljohani, M.W. Ullah, X. Zhang, G. Yang, Bioprinting and its applications in tissue engineering and regenerative medicine, Int. J. Biol. Macromol. 107 (2018) 261–275.

DOI: 10.1016/j.ijbiomac.2017.08.171

Google Scholar

[2] M.J. Baker, S. Daniels, P.G. Young, G.R. Tabor, Investigation of flow through a computationally generated packed column using CFD and additive layer manufacturing, Comput. Chem. Eng. 67 (2014) 159-165.

DOI: 10.1016/j.compchemeng.2014.04.005

Google Scholar

[3] R.D. Baker, A methodology for sensitivity analysis of maintenance and reliability models, IMA J. Manag. Math. 13 (2002) 61-70.

Google Scholar

[4] E.G. Gordeev, A.S. Galushko, V.P. Ananikov, Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling, PLoS One. 13 (2018) 1-19.

DOI: 10.1371/journal.pone.0198370

Google Scholar

[5] A. Haleem, M. Javaid, R.H. Khan, R. Suman, 3D printing applications in bone tissue engineering, J. Clin. Orthop. Trauma. 11 (2020) 118-124.

DOI: 10.1016/j.jcot.2019.12.002

Google Scholar

[6] V. Harshitha, S.S. Rao, Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials, in: Mater. Today Proc., Elsevier Ltd, 2019: pp.583-588.

DOI: 10.1016/j.matpr.2019.07.737

Google Scholar

[7] O. Larin, O. Morozov, S. Nazarenko, G. Chernobay, A. Kalynovskyi, R. Kovalenko, S. Fedulova, P. Pustovoitov, Determining mechanical properties of a pressure fire hose the type of «T», Eastern-European J. Enterp. Technol. 6 (2019) 63-70.

DOI: 10.15587/1729-4061.2019.184645

Google Scholar

[8] O. Larin, K. Potopalska, E. Grinchenko, A. Kelin, Numerical Estimation of the Residual Life-Time of the Elements of the Centrifugal Pump of the Energy Station Due to Corrosion Wear, in: Springer, Cham, 2021: pp.464-474.

DOI: 10.1007/978-3-030-66717-7_39

Google Scholar

[9] S. Nazarenko, R. Kovalenko, V. Asotskyi, G. Chernobay, A. Kalynovskyi, I. Tsebriuk, O. Shapovalov, I. Shasha, V. Demianyshyn, A. Demchenko, Determining mechanical properties at the shear of the material of t, type pressure fire hose based on torsion tests, Eastern-European J. Enterp. Technol. 5 (2020) 48-55.

DOI: 10.15587/1729-4061.2020.212269

Google Scholar

[10] H.K. Sezer, O. Eren, FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties, J. Manuf. Process. 37 (2019) 339-347.

DOI: 10.1016/j.jmapro.2018.12.004

Google Scholar

[11] M. Shapovalova, O. Vodka, Image microstructure estimation algorithm of heterogeneous materials for identification their chemical composition, in: 2019 IEEE 2nd Ukr. Conf. Electr. Comput. Eng. UKRCON 2019 - Proc., Institute of Electrical and Electronics Engineers Inc., 2019: pp.975-979.

DOI: 10.1109/ukrcon.2019.8879861

Google Scholar

[12] M. Shapovalova, O. Vodka, A Data-Driven Approach to the Prediction of Spheroidal Graphite Cast Iron Yield Surface Probability Characteristics, in: 2021: pp.565-576.

DOI: 10.1007/978-3-030-66717-7_48

Google Scholar

[13] M. Shunmugasundaram, M.A. Ali baig, M. Ajay Kumar, A review of bio-degradable materials for fused deposition modeling machine, in: Mater. Today Proc., Elsevier Ltd, 2020: pp.1596-1600.

DOI: 10.1016/j.matpr.2020.03.267

Google Scholar

[14] J. Singh, K. Chawla, R. Singh, Applications of Thermoplastic Polymers in 3D Printing, in: Ref. Modul. Mater. Sci. Mater. Eng., Elsevier, 2020: pp.113-137.

Google Scholar

[15] L.D. Tijing, J.R.C. Dizon, I. Ibrahim, A.R.N. Nisay, H.K. Shon, R.C. Advincula, 3D printing for membrane separation, desalination and water treatment, Appl. Mater. Today. 18 (2020) 1 - 22.

DOI: 10.1016/j.apmt.2019.100486

Google Scholar

[16] V. Velmurugan, G. Masthanvali, S. Thanikaikarasan, Experimental analysis of polymers specimens produce from 3D Prototype Printing- an investigation, in: Mater. Today Proc., Elsevier Ltd, 2020: pp.4156-4158.

DOI: 10.1016/j.matpr.2020.07.045

Google Scholar

[17] Y. Viazovychenko, O. Larin, Stochastic Optimization Algorithms for Data Processing in Experimental Self-heating Process, in: Springer, Cham, 2021: pp.644-653.

DOI: 10.1007/978-3-030-66717-7_55

Google Scholar

[18] O. Vodka, Computer modeling of microstructures with probabilistic cellular automata method using different nucleation rate functions, in: CEUR Workshop Proc., CEUR-WS, 2020: pp.450-461.

DOI: 10.32782/cmis/2608-34

Google Scholar