Numerical Analysis on the Structural Behavior of a Non-Engaging CFRP Bellows Coupling for Propulsion Technology

Article Preview

Abstract:

Fiber reinforced polymers (FRP) are used in a widespread range, for example in aerospace, mobility or wind energy applications due to their excellent quality profile. Moreover, rotating machine elements, which are applied in dynamic processes, require a primarily high stiffness combined with an elastic behavior. Novel FRP components or modern hybrid structures lead to a lower energy consumption of the entire mechanical system. In this respect, a shaft coupling between two shafts depicts an exemplary machine element for a possible application of FRP. This paper deals with the numerical analysis on the structural behavior of a non-engaging bellows coupling made of prepreg-based carbon fiber reinforced polymers (CFRP) for propulsion technology. The presented concept is based on the methodological construction approach for the fulfillment of the compensation and connection functionality. A very high torsional stiffness as well as a certain bending flexibility of the whole coupling geometry is required due to the connection of two torsion-loaded structures. Specific geometrical design variables could be identified with the finite elements method (FEM) and the design of experiments (DoE), which have a significant influence on the structure mechanical behavior of the CFRP bellows coupling. Based on a variable identification scheme according to Shainin, the influence of various geometrical design factors on the structural performance of the CFRP bellows coupling was evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

723-731

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] K. Drechsler, Überblick Leichtbau – Entwicklung, Bedeutung und Disziplinen, In: Themenheft Forschung: Leichtbau, Universität Stuttgart, (2007).

Google Scholar

[2] M. Flemming, G. Ziegmann, S. Roth, Faserverbundbauweisen – Halbzeuge und Bauweisen, Springer-Verlag, Berlin, (1996).

DOI: 10.1007/978-3-642-61432-3_4

Google Scholar

[3] H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden, Springer-Verlag, Berlin, (2007).

DOI: 10.1007/978-3-540-72190-1

Google Scholar

[4] H. Jäger, T. Hauke, Carbonfasern und ihre Verbundwerkstoffe, Süddeutscher Verlag onpact, München, (2010).

Google Scholar

[5] A. Fink, P. P. Camanho, J. M. Andrés, E. Pfeiffer, A. Obst, Hybrid CFRP/titanium bolted joints: performance assessment and application to a spacecraft payload adaptor, Composites Science and Technology 70 (2010), pp.305-317.

DOI: 10.1016/j.compscitech.2009.11.002

Google Scholar

[6] C. Lauter, M. Frantz, J. -P. Kohler, T. Troester, Crash tests of hybrid structures consisting of sheet metal and local CFRP reinforcements, 15th European Conference on Composite Materials, Venice, (2012).

Google Scholar

[7] N. Konchakova, F. Balle, R. Müller, P. Steinmann, D. Eifler, F. Barth, Numerical analysis of the mechanical behavior of lightweight metal-CFRP joints, Advanced Engineering Materials 15 (9) (2013), pp.846-852.

DOI: 10.1002/adem.201200286

Google Scholar

[8] N. Kashaev, V. Ventzke, S. Riekehr, F. Dorn, M. Horstmann, Assessment of alternative joining techniques for Ti-6Al-4V/CFRP hybrid joints regarding tensile and fatigue strength, Materials and Design 81 (2015), pp.73-81.

DOI: 10.1016/j.matdes.2015.04.051

Google Scholar

[9] W. Hufenbach, F. Lenz, O. Renner, Welle-Nabe-Verbindungen für Leichtbauantriebswellen in Faserverbund-Metall-Mischbauweise, In: VDI-Berichte Nr. 2176, pp.141-153, (2012).

DOI: 10.51202/9783181023372-257

Google Scholar

[10] C. Oblinger, H. Lang, K. Drechsler, CFK/Metall-Mischbauweisen im Maschinen- und Anlagenbau – wichtiger denn je, Nachhaltigkeit und Energieeffizienz durch innovative Leichtbaustrukturen, In: Umwelt-Technologie und Energie in Bayern, pp.26-28, (2015).

Google Scholar

[11] W. Hufenbach, F. Lenz, M. Birke, S. Spitzer, S. Münter, Design, Dimensioning and automated Manufacturing of profiled Composite Driveshafts, Proceedings of ICCM19, Montreal, Canada, (2013).

Google Scholar

[12] H. Haldenwanger, Development of plastics parts for the racing and standard versions of the Audi-Quattro, Warrendale, PA: Society of Automotive Engineers, (1982).

DOI: 10.4271/820801

Google Scholar

[13] M. Kleschinski, Antriebswellen aus Faser-Kunststoff-Verbunden, Diss. -Darmstadt, Shaker Verlag, Aachen, (2007).

Google Scholar

[14] P. Tichelmann, Auslegung und Optimierung Versatz-ausgleichender Bauelemente und ihre Integration in eine Antriebswelle, Diss. -Darmstadt, Shaker Verlag, Aachen, (2009).

Google Scholar

[15] J. Katz, Gestaltung und Optimierung einer nichtschaltbaren Lamellenkupplung aus Glasfaser-Kunststoff-Verbund, Diss. -Darmstadt, Shaker Verlag, Aachen, (2015).

DOI: 10.37544/0720-5953-2015-05-30

Google Scholar

[16] DIN 740-1, Antriebstechnik, Nachgiebige Wellenkupplungen, Anforderungen, Technische Lieferbedingungen, August (1986).

DOI: 10.31030/2035556

Google Scholar

[17] Richtlinie VDI 2240, Wellenkupplungen – Systematische Einteilung nach ihren Eigen-schaften, Juni (1971).

Google Scholar

[18] A. Schalitz, Kupplungs-Atlas – Bauarten und Auslegung von Kupplungen und Bremsen, 4. Auflage, A.G.T. -Verlag Georg Thum, Ludwigsburg, (1975).

Google Scholar

[19] D. Muhs, H. Wittel, D. Jannasch, J. Voßiek, Roloff/Matek Maschinenelemente, Springer Vieweg, Wiesbaden, (2013).

DOI: 10.1007/978-3-658-02327-0

Google Scholar

[20] G. Niemann, B. Neumann, H. Winter, Maschinenelemente Band 3, Springer-Verlag, Berlin, (1986).

Google Scholar

[21] M. Mayr, Technische Mechanik: Statik Kinematik Kinetik Schwingungen Festigkeitslehre, Hanser, München, (2012).

DOI: 10.3139/9783446469525.fm

Google Scholar

[22] B. Klein, Leichtbau-Konstruktion, Springer Vieweg, Wiesbaden, (2013).

Google Scholar

[23] C. Oblinger, M. Jelinek, H. Lang, A. Baeten, K. Drechsler, G. Reinhart, Development, manufacturing and testing of a CFRP bellows coupling for powertrain applications, Proceedings of the 2nd International Conference Euro Hybrid Materials and Structures 2016, Kaiserslautern, Germany, April 20-21, (2016).

Google Scholar

[24] D. Shainin, P. Shainin, Better than taguchi orthogonal tables, Quality and Reliability Engineering International, 4, (1988), pp.143-149.

DOI: 10.1002/qre.4680040209

Google Scholar

[25] D. Shainin, P. Shainin, Pre-control versus X¯ & R charting: continuous or immediate quality improvement?, Quality Engineering International, 1: 4, (1989), pp.419-429.

DOI: 10.1080/08982118908962677

Google Scholar

[26] B. Klein, Versuchsplanung – DoE: Einführung in die Taguchi/Shainin-Methodik, Oldenbourg Wissenschaftsverlag, (2014).

DOI: 10.1524/9783110343847

Google Scholar