Can European Sea Bass (Dicentrarchus labrax) Scale Be a Good Candidate for Nano-Bioceramics Production?

Article Preview

Abstract:

Bioceramics are commonly used biomaterials for orthopedic and dental applications. Among these bioceramics, hydroxyapatite (HA) and tricalcium phosphate (TCP) are of interest and are used in various biomedical applications. Production of bioceramics from natural materials such as bovine and sheep bones with calcination method, is possible. Lately, fish scales become an alternative biological source for bioceramic production. The present study proposes an approach to obtain HA bone-scaffolds from European Sea Bass (Dicentrarchus labrax) scales aiming to provide nano-biomaterials via calcination method. Untreated fish scales are obtained and are carefully cleaned from their meat and grease. They are washed with alkaline water several times and calcinated at 850°C for 4 hours. Energy Dispersive Spectroscopy (EDS), X-ray diffraction analysis, Scanning Electron Microscopy (SEM) studies are performed. Various calcium phosphate species (HA, TCP) are identified in the study. SEM images prove the presence of the nano-scale structures. This study indicates calcination as a simple way of nano-scale bioceramic production for drug delivery and tissue engineering applications. Being produced from wastes of a sustainable and cheap source, these bioceramics can be good candidates for future clinical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-65

Citation:

Online since:

May 2016

Export:

Price:

* - Corresponding Author

[1] I.J. Macha, L.S. Ozyegin, F.N. Oktar, B. Ben-Nissan, Conversion of Ostrich Eggshells (Struthio camelus) to Calcium Phosphates, J. Aust. Ceram. Soc. 51-1 (2015) 125-133.

Google Scholar

[2] Z.E. Erkmen, Y. Genc, F.N. Oktar, Microstructural and mechanical properties of hydroxyapatite-zirconia composites, J Am. Ceram. Soc. 90-9 (2007) 2885-2892.

DOI: 10.1111/j.1551-2916.2007.01849.x

Google Scholar

[3] B. A., Syed, & J. B. Evans, Stem cell therapy market. Nat. Rev. Drug. Dıscov., 12-3 (2013)., 185-186.

Google Scholar

[4] T. H. Darrah, PhD thesis, Inorganic Trace Element Composition of Modern Human Bones: Relation to Bone Pathology and Geographical Provenance, University of Rochester Rochester, New York, (2009).

Google Scholar

[5] O. Gunduz, Z. Ahmad, N. Ekren, S. Agathopoulos, S. Salman, F.N. Oktar, Reinforcing of Biologically Derived Apatite with Commercial Inert Glass, J. Thermoplast. Compos. Mater. 22 -4 (2009) 407-419.

DOI: 10.1177/0892705709105974

Google Scholar

[6] N. Demirkol, O. Meydanoglu, E.S. Kayali, F.N. Oktar, Microstructural and mechanical properties of sheep SHA-Niobium oxide composites, Acta Phys. Pol. A , 121-1 (2012) 274-276.

DOI: 10.12693/aphyspola.121.274

Google Scholar

[7] D. Demirkol, A.Y. Oral, F.N. Oktar, E.S. Kayali, Effects of Commercial Inert Glass (CIG) Addition on Mechanical and Microstructural Properties of Chicken Hydroxyapatite (CHA), Key Eng. Mater., 587 (2014) 33-38.

DOI: 10.4028/www.scientific.net/kem.587.33

Google Scholar

[8] O. Gunduz, C. Gode, Z. Ahmad, H. Gökçe, M. Yetmez, C. Kalkandelen, Y. M. Sahin, F.N. Oktar, Preparation and Evaluation of Cerium Oxide-Bovine Hydroxyapatite Composites for Biomedical Engineering J Mech Behav Biomed Mater, 35 (2014) 70-76.

DOI: 10.1016/j.jmbbm.2014.03.004

Google Scholar

[9] F.N. Oktar, M. Yetmez, S. Agathopoulos, T.M. Lopez Goerne, G. Goller, I. Peker, J.M.F. Ferreira, Bond-coating in plasma-sprayed calcium-phosphate coatings,  J. Mater. Sci. – Mater. in Med. 17-11 (2006) 1161-1171.

DOI: 10.1007/s10856-006-0544-5

Google Scholar

[10] L.S. Ozyegin, F.N. Oktar, G. Goller, E.S. Kayali, T. Yazici, Plasma-sprayed bovine hydroxyapatite coatings, Mater. Lett. 8-21 (2004) 605-2609.

DOI: 10.1016/j.matlet.2004.03.033

Google Scholar

[11] R Samur, L.S. Ozyegin, D. Agaogullari, F.N. Oktar, S. Agathopoulos, C. Kalkandelen, I. Duman, B. Ben-Nissan, Calcium phosphate formation from sea urchine – (Brissus Latecarinatus) via modified mechano-chemical (ultrasonic) conversation method, Metall. 52, (2013).

Google Scholar

[12] O. Gunduz, Y.M. Sahin, S. Agathopoulos, D. Ağaoğulları, H. Gökçe, E.S. Kayali, C. Aktas, B. Ben-Nissan, F.N. Oktar, Nano Calcium Phosphate Powder Production through Chemical Agitation from Atlantic Deer Cowrie Shells (Cypraea cervus Linnaeus), Key Eng. Mater. 587 (2014).

DOI: 10.4028/www.scientific.net/kem.587.80

Google Scholar

[13] YC. Huang, PC. Hsiao, HJ. Chai, Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells, Ceram. Inter. 37 (2011) 1825–1831.

DOI: 10.1016/j.ceramint.2011.01.018

Google Scholar

[14] R. Chakraborty, D. RoyChowdhury, Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chem. Eng. J. 215 (2013) 491-499.

DOI: 10.1016/j.cej.2012.11.064

Google Scholar

[15] J. Venkatesan, S-K Kim., Handbook of Marine Biotechnology, (Eds) S-K Kim., Marine Biomaterials, Marine bioceramics, Springer, Dordrecht, Heidelberg, London, New York, 2015, pp.1195-1215.

DOI: 10.1007/978-3-642-53971-8_53

Google Scholar

[16] https: /en. wikipedia. org/wiki/European_seabass 26 June, (2015).

Google Scholar

[17] M. Stoia, M. Ionescu, O. Stefănescu, R. Murgan, M. Stefanescu, Preparation of β-Tricalcium Phosphate from Precursors Obtained by a Wet Precipitation Method, Chem. Bull. POLITEHNICA, Univ. (Timişoara), Volume 53-67 (2008), 204-207.

Google Scholar

[18] J. Vandiver, N. Patel, W. Bonfield, C. Ortiz, Nanoscale Morphology of Apatite Precipitated onto Synthetic Hydroxyapatite from Simulated Body Fluid, Key Eng. Mater. 284 (2005) 497-500.

DOI: 10.4028/www.scientific.net/kem.284-286.497

Google Scholar

[19] R. K. Rude & H. E. Gruber, Magnesium deficiency and osteoporosis: animal and human observations. J. Nutr. Biochem., 15-12 (2004) 710-716.

DOI: 10.1016/j.jnutbio.2004.08.001

Google Scholar