Structural, Optical and Electrical Properties of ZnxSn1-xS Thin Films Deposited by Chemical Spray Pyrolysis

Article Preview

Abstract:

In the present study, ZnxSn1-xS (x = 0, 0.25, 0.5, 0.75 and 1) thin film samples were deposited by ultrasonic spray pyrolysis technique on glass substrates at 350°C to investigate the effect of variation of Zn concentration (x) on the structural, morphological, optical and electrical properties of ZnxSn1-xS thin films. The films were deposited by varying Zn content in the starting solution. The films deposited were found to be amorphous having root mean square (RMS) roughness ranged from 18.2 to 93.5 nm. The optical characterization by UV-Vis spectroscopy showed that the transmittance and reflectance of all samples are lower than 12.2 % and 10 % respectively. The optical band gap was estimated from the reflectance and transmittance spectra are about 3.86 eV. The carrier mobility is ranged from 113 to 2600 cm2/v.s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-77

Citation:

Online since:

February 2020

Export:

Price:

* - Corresponding Author

[1] V. Popescu, H.J. Nascu, E. Darvasi, Optical properties of PbS-CdS multilayers and mixed (CdS+PbS) thin films deposited on glass substrate by spray pyrolysis,, J. Opt. Electron. Adv. Mater. 8, (2006), 1187–1193.

Google Scholar

[2] Stavarache I., Maraloiu V. A., Prepelita P., Iordache G., Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties, Beilstein J. Nanotechnol. 7(2016)1492–1500.

DOI: 10.3762/bjnano.7.142

Google Scholar

[3] N. P. Klochko, G. S. Khrypunov, N. D. Volkova, V. R. Kopach, A. V Momotenko, V. N. Lyubov, Structure and properties of electrodeposited films and film stacks for precursors of chalcopyrite and kesterite solar cells,, Semiconductors, 48, (2014), 521–530. https://doi.org/10.1134/S1063782614040150.

DOI: 10.1134/s1063782614040150

Google Scholar

[4] Petronela Prepelita, I. Stavarache, C. Negrila, F. Garoi, V. Craciun, Chalcogenide thin films deposited by rfMS technique using a single quaternary target, Applied Surface Science, 424(2017)421-427.

DOI: 10.1016/j.apsusc.2016.11.071

Google Scholar

[5] B. Zaidi, C. Shekhar, B. Hadjoudja, S. Gagui, B. Chouial, Optimization of highly efficient monolayer MoSe2 based solar cells,, Acta Physica Polonica A, 136, (2019), 495-497.

DOI: 10.12693/aphyspola.136.495

Google Scholar

[6] Stavarache I., Teodorescu VS, Prepelita P., C. Logofatu, ML. Ciurea, Ge nanoparticles in SiO2 for near infrared photodetectors with high performance, Scientific Reports 9 (2019) 10286.

DOI: 10.1038/s41598-019-46711-w

Google Scholar

[7] M.Powalla, P.Jackson , W.Witte , D.Hariskos , S.Paetel , C.Tschamber, W.Wischmann , High-efficiency Cu(In,Ga)Se2 cells and modules,, Solar Energy Mater. Solar Cells, 119, (2013), 51–58. https://doi.org/10.1016/j.solmat.2013.05.002.

DOI: 10.1016/j.solmat.2013.05.002

Google Scholar

[8] B. G. Jeyaprakash, R. Ashok kumar, K. Kesavan and A. Amalarani, Structural and optical characterization of spray deposited SnS thin film,, J. Am. Sci., 6, (2010), 22–26.

Google Scholar

[9] R. Mariappan, T. Mahalingam, V. Ponnuswamy,Preparation and characterization of electrodeposited SnS thin films,, Optik., 122, (2011), 2216–2219. https://doi.org/10.1016/j.ijleo.2011.01.015.

DOI: 10.1016/j.ijleo.2011.01.015

Google Scholar

[10] D. Zöller, M. Reiter, D. Abel, Optimization of a vacuum thermal evaporation process through Model-based Predictive Control of the source temperature,, IFAC-PapersOnLine, 48, (2015), 86-91.https://doi.org/10.1016/j.ifacol.2015.09.164.

DOI: 10.1016/j.ifacol.2015.09.164

Google Scholar

[11] W. Tang, D.C. Cameron, Aluminium-doped zinc oxide transparent conductors deposited by the sol-gel process,, Thin Solid Films, 238, (1994) 83 -87. https://doi.org/10.1016/0040-6090(94)90653-X.

DOI: 10.1016/0040-6090(94)90653-x

Google Scholar

[12] A.V. Singh, R.M. Mehra, N. Buthrath, A. Wakahara, A. Yoshida, Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,, J. Appl. Phys., 90, (2001), 5661-5665. https://doi.org/10.1063/1.1415544.

DOI: 10.1063/1.1415544

Google Scholar

[13] N. Houaidji, M. Ajili, B. Chouial, N. T. Kamoun, K. Kamli, A. Khadraoui, B. Zaidi, B. Hadjoudja, A. Chibani, Z. Hadef, Optoelectronic Properties of Fluorine and Cobalt co-Doped Tin Oxide Thin Films Deposited By Chemical Spray Pyrolysis,, Journal of Nano Research, 60, (2019), 63-75. https://doi.org/10.4028/www.scientific.net/JNanoR.60.63.

DOI: 10.4028/www.scientific.net/jnanor.60.63

Google Scholar

[14] M. Ajili, M. Castagné, N.K. Turki, Study on the doping effect of Sn-doped ZnO thin films,, Superlattice Microst, 53, (2013), 213-222. https://doi.org/10.1016/j.spmi.2012.10.012.

DOI: 10.1016/j.spmi.2012.10.012

Google Scholar

[15] K. Kamli, Z. Hadef, B. Chouial, B. Zaidi, B. Hadjoudja and A. Chibani, Synthesis and characterisation of tin sulphide thin films,, Surface Engineering, 33, (2017), 567-572.

DOI: 10.1080/02670844.2016.1271593

Google Scholar

[16] B. Zaidi,‏ B. Hadjoudja, B. Chouial, K. Kamli, A. Chibani, C. Shekhar, Impact of hydrogen passivation on electrical properties of polysilicon thin films, Silicon, 10, (2018), pp.2161-2163.

DOI: 10.1007/s12633-017-9746-3

Google Scholar

[17] B. Zaidi, B. Hadjoudja, H. Felfli, B. Chouial, A. Chibani, Effet des Traitements Thermiques sur le Comportement Électrique des Couches de Silicium Polycristallin pour des Applications Photovoltaïques, Revue de Métallurgie, 108, (2011), pp.443-446.

DOI: 10.1051/metal/2011075

Google Scholar

[18] Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films,, Sol. Energy Mater. Sol. Cells, 93, (2009), 1230e1237. https://doi.org/10.1016/j.solmat.2009.01.011.

DOI: 10.1016/j.solmat.2009.01.011

Google Scholar

[19] E.K. Michael, D. Norcini, S. Komarneni, J.R.S. Brownson,Nanocomposite synthesis and characterization of Kesterite, Cu2ZnSnS4 (CZTS) for photovoltaic applications,, Ceram. Int., 39, (2013) 7935e7941. https://doi.org/10.1016/j.ceramint.2013.03.057.

DOI: 10.1016/j.ceramint.2013.03.057

Google Scholar