Development of Self-Assembled Biomimetic Boc-Protected Peptide-Polymer Based Nanovehicles for Targeted Delivery to Tumor Cells

Article Preview

Abstract:

Although effective, chemotherapeutic drugs often cause undesired side-effects. Thus, encapsulating chemotherapeutic drugs into nanoscale drug delivery vehicles (DDVs) has the potential to reduce side effects and promote targeted delivery. By mimicking ABA like block-co-polymer systems, we have developed a new amphiphilic biomimetic co-polymer Boc-Ile-PEG-Ile-Boc which was found to readily self-assemble into nanomicelles within hydrophilic shell structures. To facilitate targeting tumor cells, the nanoassemblies were bound to folate, leading to the formation of core shell like structures (IBP-F). Gold nanoparticles (AuNPs), were then embedded followed by functionalization with a second layer of folate. The final DDV system abbreviated (IBP-F-Au-F) formed a multi-layered nanostructure that was capable of efficiently encapsulating the anti-tumor drug tamoxifen. For comparison, we also examined the efficacy of the IBP-F assemblies as DDVs in the absence of AuNPs and a second folate layer. Release profiles showed an initial burst release, followed by sustained release. The DDVs were found to be biocompatible. Upon encapsulating the DDVs with tamoxifen, cell proliferation was inhibited over a period of 72 hours for both DDVs, while non-cancerous dermal fibroblasts continued to proliferate, thus indicating specific targeting ability of the DDVs. Confocal microscopy studies conducted in the presence of human breast cancer cells, MDA-MDB 231 revealed that the drug loaded assemblies were successfully internalized within the cells. SPR analysis demonstrate that IBP-F-Au-F had a higher affinity for breast cancer cells over non-cancerous keratinocyte cells. Thus, we have developed a new family of DDVs that selectively targets tumor cells.

You might also be interested in these eBooks

Info:

Pages:

33-53

Citation:

Online since:

October 2016

Export:

Price:

* - Corresponding Author

[1] D. J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, L. Norton, Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2, N. Engl. J. Med. 344 (2001).

DOI: 10.1056/nejm200103153441101

Google Scholar

[2] G. P. Murphy, S. Beckley, M. F. Brady, T. M. Chu, J. B. Dekernion, D. Dhabuwala, J. F. Gaeta, R. P. Gibbons, S. A. Loening, C. F. Mckiel, D. G. Mcleod, J. E. Pontes, G. R. Prout, P. T. Scardino, J. Schlegel, J. D. Schmidt, W. W. Scott, N. H. Slack, M. S. Soloway, Treatment of newly diagnosed metastatic prostate cancer patients with chemotherapy agents in combination with hormones versus hormones alone, Cancer 51 (1983).

DOI: 10.1002/1097-0142(19830401)51:7<1264::aid-cncr2820510716>3.0.co;2-u

Google Scholar

[3] A. H. Partridge, H. J. Burstein, E. P. Winer, Side Effects of Chemotherapy and Combined Chemohormonal Therapy in Women with Early-Stage Breast Cancer. J. Natl. Cancer. Monogr. 93 (2001) 135-143.

DOI: 10.1093/oxfordjournals.jncimonographs.a003451

Google Scholar

[4] A. Yagoda, D. Petrylak, Cytotoxic chemotherapy for Advanced Hormone-Resistant Prostate Cancer, Cancer 71 (1993) 1098-1109.

DOI: 10.1002/1097-0142(19930201)71:3+<1098::aid-cncr2820711432>3.0.co;2-g

Google Scholar

[5] S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, R. Sasisekharan, Temporal Targeting of Tumour Cells and Neovasculature with a Nanoscale Delivery System, Nature 436 (2005) 568-572.

DOI: 10.1038/nature03794

Google Scholar

[6] R. Sinha, G. J. Kim, S. Nie, D. Shin, Nanotechnology in Cancer Therapeutics: Bioconjugated nanoparticles for drug delivery, Mol. Cancer Ther. 5 (2006) 1909-(1917).

DOI: 10.1158/1535-7163.mct-06-0141

Google Scholar

[7] Y. Malam, M. Loizidou, A. M. Seifalian, Liposomes and Nanoparticles: Nanosized Vehicles for Drug Delivery in Cancer, Trends Pharmacol. Sci. 30 (2009) 592-599.

DOI: 10.1016/j.tips.2009.08.004

Google Scholar

[8] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol. 2 (2007) 751-760.

DOI: 10.1038/nnano.2007.387

Google Scholar

[9] K. Cho, X. Wang, S. Nie, Z. Chen, D. M. Shin, Therapeutic Nanoparticles for Drug Delivery in Cancer, Clin. Cancer Res. 14 (2008) 1310-1316.

DOI: 10.1158/1078-0432.ccr-07-1441

Google Scholar

[10] R. Bhatt, P. de Vries, J. Tulinsky, G. Bellamy, B. Baker, J. Singer, P.J. Klein, Synthesis and in Vivo Antitumor Activity of Poly(l-glutamic acid) Conjugates of 20(S)-Camptothecin, J. Med. Chem. 46 (2003) 190-193.

DOI: 10.1021/jm020022r

Google Scholar

[11] U. Kedar, P. Phutane, S. Shdihaye, V. Kadam, Advances in Polymeric Micelles for Drug Delivery and Tumor Targeting, Nanomedicine 6 (2010) 714-729.

DOI: 10.1016/j.nano.2010.05.005

Google Scholar

[12] Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery, ACS Nano 1 (2007) 50-56.

DOI: 10.1021/nn700040t

Google Scholar

[13] C. Lee, J. MacKay, J. Fréchet, F. Szoka, Designing Dendrimers for Biological Applications, Nat. Biotechnol. 23 (2005) 1517-1526.

DOI: 10.1038/nbt1171

Google Scholar

[14] A. Sharma, U. Sharma, Liposomes in Drug Delivery: Progress and Limitations, Int. J. Pharm. 154 (1997) 123-140.

Google Scholar

[15] Q. Wang, X. Zhang, J. Zhen, D. Liu, Self-Assembled Peptide Nanotubes as Potential Nanocarriers for Drug Delivery, RSC Adv. 4 (2014) 25461-25469.

DOI: 10.1039/c4ra03304c

Google Scholar

[16] H. Liu, J. Chen, Q. Shen, W. Fu, W. Wu, Molecular Insights on the Cyclic Peptide Nanotube-Mediated Transportation of Antitumor Drug 5-Fluorouracil, Mol. Pharm. 7 (2010) 1985-(1994).

DOI: 10.1021/mp100274f

Google Scholar

[17] J. A. MacKay, M. Chen, J. R. McDaniel, W. Liu, A. J. Simnick, A. Chilkoti, Self-assembling Chimeric Polypeptide–Doxorubicin Conjugate Nanoparticles that abolish Tumours after a Single injection Nat. Mater. 8 (2009) 993-999.

DOI: 10.1038/nmat2569

Google Scholar

[18] R. Ischakov, L. Adler-Abramovich, L. Buzhansky, T. Shekhter, E. Gazit, Peptide Based Hydrogel Nanoparticles as Effective Drug Delivery Agents, Bioorg. Med. Chem. 21 (2013) 3517-3522.

DOI: 10.1016/j.bmc.2013.03.012

Google Scholar

[19] R. Huang, Q. Wei, L. Feng, R. Su, Z. He, Self-Assembling Peptide-Polysaccharide Hybrid Hydrogel as a Potential Carrier for Drug Delivery, Soft Matter, 7 (2011) 6222-6230.

DOI: 10.1039/c1sm05375b

Google Scholar

[20] R. J. Lee, P. S. Low, Folate Mediated Cell Targeting of Liposome-Entrapped Doxorubicin in vitro BBA-Biomembranes 1233 (1995) 134-144.

DOI: 10.1016/0005-2736(94)00235-h

Google Scholar

[21] Z. Liu, J. T. Robinson, X. Sun, H. Dai, PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs, J. Am. Chem. Soc. 130 (2008) 10876-10877.

DOI: 10.1021/ja803688x

Google Scholar

[22] R. J. Lee, P. S. Low, Delivery of Liposomes into cultured KB cells via Folate Receptor-mediated Endocytosis. J. Biol. Chem. 269 (1994) 3198-3204.

DOI: 10.1016/s0021-9258(17)41848-5

Google Scholar

[23] P. Singh, U. Gupta, A. Asthana, N. K. Jain, Folate and Folate−PEG−PAMAM Dendrimers: Synthesis, Characterization, and Targeted Anticancer Drug Delivery Potential in Tumor Bearing Mice, Bioconjugate Chem. 19 (2008) 2239-2252.

DOI: 10.1021/bc800125u

Google Scholar

[24] A. Gabizon, A. T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M. M. Qazen, S. Zalipsky, Targeting Folate Receptor with Folate Linked to Extremities of Poly(ethylene glycol)-Grafted Liposomes:  In Vitro Studies, Bioconjugate Chem. 10 (1999).

DOI: 10.1021/bc9801124

Google Scholar

[25] E. Song, Z. L. Zhang, Q. Y. Luo, W. Lu, Y. B. Shi, D. Pang, W. Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis, Clin. Chem. 55 (2009) 955-963.

DOI: 10.1373/clinchem.2008.113423

Google Scholar

[26] D. J. O'Shannessy, E. B. Somers, J. Maltzman, R. Smale, Y. Fu, Folate receptor alpha (FRA) expression in breast cancer: identification of a new molecular subtype and association with triple negative disease, Springer Plus 1 (2012) 22.

DOI: 10.1186/2193-1801-1-22

Google Scholar

[27] F. Wang, Y. Chen, D. Zhang, Q. Zhang, D. Zheng, L. Hao, Y. Liu, C. Duan, L. Jia, G. Liu, Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles, Int. J. Nanomed. 7 (2012).

DOI: 10.2147/ijn.s27823

Google Scholar

[28] A. K. Khan, R. Rashid, G. Murtaza, Gold Nanoparticles: Synthesis and Applications in Drug Delivery, A. Zahra, J. Trop. Pharm. Res. 13 (2014)1169-1177.

DOI: 10.4314/tjpr.v13i7.23

Google Scholar

[29] P. Ghosh, G. Han, M. De, C. Kim, V. Rotello, Gold Nanoparticles in Delivery Applications, Adv. Drug Deliver. Rev. 60 (2008) 1307-1315.

DOI: 10.1016/j.addr.2008.03.016

Google Scholar

[30] G. Han, P. Ghosh, V. M. Rotello. Functionalized Gold nanoparticles for Drug Delivery Nanomedicine 2 (2007) 113-123.

DOI: 10.2217/17435889.2.1.113

Google Scholar

[31] J. Chen, M, Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, J. Xia, Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications, Adv. Funct. Mater. 20 (2010) 3684-3694.

DOI: 10.1002/adfm.201001329

Google Scholar

[32] R. A. Sperling, T. Pellegrino, J. K. Li, W. H. Chang, W. J. Parak, Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups, Adv. Funct. Mater. 16 (2006) 943-948.

DOI: 10.1002/adfm.200500589

Google Scholar

[33] X. Yang, Y. Chen, R. Yuan, G. Chen, E. Blanco, J. Gao, X. Shuai, Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells, Polymer, 49 (2008) 3477-3485.

DOI: 10.1016/j.polymer.2008.06.005

Google Scholar

[34] O. Abe, Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group, The Lancet 351 (1998) 1451-1467.

DOI: 10.1016/s0140-6736(97)11423-4

Google Scholar

[35] A. Renodon, J. Boucher, M. Sari, M. Delaforge, J. Ouazzani, D. Mansuy, Strong Inhibition of Neuronal Nitric Oxide Synthase by the Calmodulin Antagonist and Anti-Estrogen Drug Tamoxifen Biochem. Pharmacol. 54 (1997) 1109-1114.

DOI: 10.1016/s0006-2952(97)00316-x

Google Scholar

[36] Y. L. Ottaviano, J. Issa, F. F. Parl, H. S. Smith, S. B. Baylin, N. E. Davidson, Methylation of the Estrogen Receptor Gene CpG Island Marks Loss of Estrogen Receptor Expression in Human Breast Cancer Cells, Cancer Res. 54 (1994) 2552-2555.

Google Scholar

[37] A. J. Stewart, M. D Johnson, F. E. B. May, B. R. Westley, Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells, J. Biol. Chem. 265 (1990).

DOI: 10.1016/s0021-9258(17)45342-7

Google Scholar

[38] S. G. Nayfield, J. E. Karp, L. G. Ford, F. A. Dorr, B. S. Kramer, Potential Role of Tamoxifen in Prevention of Breast Cancer, J. Natl. Cancer I. 82 (1991) 1450-1459.

DOI: 10.1093/jnci/83.20.1450

Google Scholar

[39] J. R. Garreau, T. DeLaMelena, D. Walts, Karamlou, K. Johnson, Side effects of aromatase inhibitors versus tamoxifen: the patients' perspective, Am. J. Surg. 192 (2006) 496-498.

DOI: 10.1016/j.amjsurg.2006.06.018

Google Scholar

[40] J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic nanoparticles and targeted èdrug delivering, Pharmacol. Res. 62 (2010) 144-149.

DOI: 10.1016/j.phrs.2010.01.014

Google Scholar

[41] R. Jayakumar, M. Murugesan, C. Asokan, M. A. Sciboh, Self-Assembly of a Peptide Boc−(Ile)5−OMe in Chloroform and N, N-Dimethylformamide, Langmuir 16 (2000) 1489-1496.

DOI: 10.1021/la990004l

Google Scholar

[42] J. S. Choi, D. K. Joo, C. H. Kim, K. Kin, J. S. Park, Synthesis of a Barbell-like Triblock Copolymer, Poly(l-lysine) Dendrimer-block-Poly (ethylene glycol)-block-Poly(l-lysine) Dendrimer, and Its Self-Assembly with Plasmid DNA, J. Am. Chem. Soc. 122 (2000).

DOI: 10.1021/ja9931473

Google Scholar

[43] P. M. Tiwari, K. Vig, V. A. Dennis, S. R. Singh, Functionalized Gold Nanoparticles and their Biomedical Applications, Nanomaterials 1 (2011) 31-63.

DOI: 10.3390/nano1010031

Google Scholar

[44] J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, J. Discuss. Faraday Soc. 11 (1951) 55-75.

DOI: 10.1039/df9511100055

Google Scholar

[45] W. Haiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra, Anal. Chem. 79 (2007) 4215-4221.

DOI: 10.1021/ac0702084

Google Scholar

[46] M. Wirde, U. Gelius, Self-Assembled Monolayers of Cystamine and Cysteamine on Gold Studied by XPS and Voltammetry, Langmuir 15 (1999) 6370-6378.

DOI: 10.1021/la9903245

Google Scholar

[47] S. Zhang, Fabrication of Novel Biomaterials through Molecular Self-Assembly, Nat. Biotechnol. 21 (2003) 1171-1178.

DOI: 10.1038/nbt874

Google Scholar

[48] M. Zhang, X. H. Li, Y. D. Gong, N. M. Zhao, X. F. Zhang, Properties and Biocompatibility of chitosan films modified by blending with PEG, Biomaterials 23 (2002) 2641-2648.

DOI: 10.1016/s0142-9612(01)00403-3

Google Scholar

[49] D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437 (2005) 640-647.

DOI: 10.1038/nature04162

Google Scholar

[50] R. R. Sawant, V. P. Torchillin, Polymeric micelles: polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example, Methods Mol. Biol. 624 (2010) 131-149.

DOI: 10.1007/978-1-60761-609-2_9

Google Scholar

[51] F. Ahmed, D. E. Discher, Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles, J. Control. Release 96 (2004) 37-53.

DOI: 10.1016/j.jconrel.2003.12.021

Google Scholar

[52] D. J. Owen, Linking endocytic cargo to clathrin: structural and functional insights into coated vesicle formation. Biochem. Soc. Trans. 32 (2004) 1-14.

DOI: 10.1042/bst0320001

Google Scholar

[53] G. Motkar, M. Lonare, O. Patil, S. Mohanty, Self-assembly of folic acid in aqueous media, AIChE J. 59 (2013) 1360-1368.

DOI: 10.1002/aic.14066

Google Scholar

[54] Y. Kamikawa, M. Nishii, T. Kato, Self-Assembly of Folic Acid Derivatives: Induction of Supramolecular Chirality by Hierarchical Chiral Structures, Chem. Eur. J. 10 (2004) 5942-5951.

DOI: 10.1002/chem.200400424

Google Scholar

[55] R. Bongartz, D. Ag, M. Seleci, J. G. Walter, E. E. Yalcinkaya, D. O. Demirkol, F. Stahl, S. Timur, T. Scheper, Folic acid-modified clay: targeted surface design for cell culture applications, J. Mater. Chem. B. 1 (2012) 522-528.

DOI: 10.1039/c2tb00328g

Google Scholar

[56] J. Y. Lee, P. C. Painter, M. M. Coleman, Hydrogen bonding in polymer blends. 3. Blends involving polymers containing methacrylic acid and ether groups, Macromolecules, 21 (1988) 346-354.

DOI: 10.1021/ma00180a011

Google Scholar

[57] P. L. Privalov, S. J. Gill, Stability of protein structure and hydrophobic interaction, Adv. Protein Chem. 39 (1988) 191-234.

DOI: 10.1016/s0065-3233(08)60377-0

Google Scholar

[58] M. Sturtevant, Heat capacity and entropy changes in processes involving proteins, Proc. Natl. Acad. Sci. U.S.A. 74 (1977) 2236-2240.

DOI: 10.1073/pnas.74.6.2236

Google Scholar

[59] C. Garrido, N. Dahl, C. A. Simpson, J. Bresee, D. Feldhein, D. M. Margolis, XIX International Aids Conference, (2012) July 22.

Google Scholar

[60] Y. Xu, Q. Cao, F. Svec, J. M. Fréchet, Porous Polymer Monolithic Column with Surface-Bound Gold Nanoparticles for the Capture and Separation of Cysteine-Containing Peptides, Anal. Chem. 82 (2010) 3352-3358.

DOI: 10.1021/ac1002646

Google Scholar

[61] G. M. Khan, Controlled release oral dosage forms: Some recent advances in matrix type drug delivery systems, J. Med. Sci. 1 (2001) 350-354.

DOI: 10.3923/jms.2001.350.354

Google Scholar

[62] P. Li, Y. Wang, F. Zeng, L. Chen, Z. Peng, L. X. Kong, Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells, Carbohydrate. Res. 346 (2011) 801-806.

DOI: 10.1016/j.carres.2011.01.027

Google Scholar

[63] K. G. Thomas, P. V. Kamat, Making Gold Nanoparticles Glow:  Enhanced Emission from a Surface-Bound Fluoroprobe, J. Am. Chem. Soc. 122 (2000) 2655-2656.

DOI: 10.1021/ja9941835

Google Scholar

[64] J. L. Zhang, R. S. Srivastava, R. D. K. Misra, Core−Shell Magnetite Nanoparticles Surface Encapsulated with Smart Stimuli-Responsive Polymer:  Synthesis, Characterization, and LCST of Viable Drug-Targeting Delivery System, Langmuir, 23 (2007).

DOI: 10.1021/la0636199

Google Scholar

[65] F. Li, H. Zhang, B. Dever, X. F. Li, X. C. Le, Thermal Stability of DNA Functionalized Gold Nanoparticles, Bioconj. Chem. 24 (2013) 1790-1797.

DOI: 10.1021/bc300687z

Google Scholar

[66] G. Von White, Y. Chen, J. Roder-Hanna, G. D. Bothun, C. L. Kitchens, Structural and Thermal Analysis of Lipid Vesicles Encapsulating Hydrophobic Gold Nanoparticles, ACS Nano, 6 (2012) 4678-4685.

DOI: 10.1021/nn2042016

Google Scholar

[67] S. Ashwini, S. Durraivel, J. Balasubramanian, B. Mounika, B. N. Kumar, S Sivaneswari, N. Preethi, V. A. Kumar, S. V. Murthy, Formulation of sustained release drug delivery of carbamazepine to modulate release of drug to achieve specific clinical purpose, Der Pharmacia Sinica 5 (2014).

Google Scholar

[68] Y. Yeo, K. Park, Control of encapsulation efficiency and initial burst in polymeric microparticle systems, Arch. Pharm. Res. 27 (2004) 1-12.

DOI: 10.1007/bf02980037

Google Scholar

[69] C. Barbé, J. Bartlett, L. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja, Silica Particles: A Novel Drug-Delivery System, Adv. Mater. 16 (2004) 1959-(1966).

DOI: 10.1002/adma.200400771

Google Scholar

[70] G. Tiwari, R. Tiwari, B. Sriwastava, L. Bhati, S. Pandey, P. Pandey, S. Bannerjee, Drug delivery systems: An updated review, Int. J. Pharm. Investig. 2 (2012) 2-11.

DOI: 10.4103/2230-973x.96920

Google Scholar

[71] S. A. Curley, F. Izzo, L. A. Ellis, J. N. Vauthey, P. Vallone, Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis, Ann. Surg. 232 (2000) 381-391.

DOI: 10.1097/00000658-200009000-00010

Google Scholar

[72] K. Muenstedt, S. El-Safadi, Nutritive Supplements - Help or Harm for Breast Cancer Patients? Breast Care 5 (2010) 383-387.

DOI: 10.1159/000322651

Google Scholar

[73] L. Ghibelli, C. Nosseri, S. Coppola, V. Maresca, L. Dini, The Increase in H2O2-Induced Apoptosis by ADP-Ribosylation Inhibitors Is Related to Cell Blebbing, Exp. Cell Res. 221 (1995) 470-477.

DOI: 10.1006/excr.1995.1398

Google Scholar

[74] S. D. Weitman, R. H. Lark, L. R. Coney, D. Fort, V. Frasca, V. Zurawski Jr., B. Kamen, Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues, Cancer Res. 52 (1992) 3396-3401.

Google Scholar

[75] D. Hu, Z. Sheng, S. Fang, Y. Wang, D. Gao, P. Zhang, P. Gong, Y. Ma, L. Cai, Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis, Theranostics, 4 (2014) 142-153.

DOI: 10.7150/thno.7266

Google Scholar

[76] R. Cailleau, R. Young, M. Olive, W. Reeves, Breast tumor cell lines from pleural effusions, J. Natl. Cancer Inst. 1974, 53, 661-674.

DOI: 10.1093/jnci/53.3.661

Google Scholar

[77] A. Duarte, J. C. G. Esteves da Silva, Reduced Fluoresceinamine as a Fluorescent Sensor for Nitric Oxide, Sensors, 10 (2010) 166-1669.

DOI: 10.3390/s100301661

Google Scholar

[78] Y. Liu, M. Shipton, J. Ryan, E. Kaufman, S. Franzen, D. Feldheim, D. L. Synthesis, Stability, and Cellular Internalization of Gold Nanoparticles Containing Mixed Peptide−Poly(ethylene glycol) Monolayers Anal. Chem. 79 (2007) 2221-2229.

DOI: 10.1021/ac061578f

Google Scholar

[79] G. Wegner, H. Lee, R. Corn, Anal. Chem. Characterization and Optimization of Peptide Arrays for the Study of Epitope−Antibody Interactions Using Surface Plasmon Resonance Imaging, 74 (2002) 5161-5168.

DOI: 10.1021/ac025922u

Google Scholar

[80] C. Bich, M. Scott, A. Panagiotidis, R. Wenzel, A. Nazabal, R. Zenobi, Characterization of antibody-antigen interactions: comparison between surface plasmon resonance measurements and high-mass matrix-assisted laser desorption/ionization mass spectrometry, Anal. Biochem. 375 (2008).

DOI: 10.1016/j.ab.2007.11.016

Google Scholar

[81] F. Yao, R. Zhang, H. Tian, X. Li, Studies on the Interactions of Copper and Zinc Ions with β-Amyloid Peptides by a Surface Plasmon Resonance Biosensor, Int. J. Mol. Sci. 13 (2012) 11832-11843.

DOI: 10.3390/ijms130911832

Google Scholar

[82] W. Wang, L. Yin, L. Gonzalez-Malerva, S. Wang, X. Yu, S. Eaton, S. Zhang, H. Chen, J. LaBaer, N. Tao, In situ drug-receptor binding kinetics in single cells: a quantitative label-free study of anti-tumor drug resistance, Scientific Reports 4 (2014).

DOI: 10.1038/srep06609

Google Scholar

[83] R. Shervedani, A. Farahbakhsh, M. Bagherzadeh, Functionalization of gold cysteamine self-assembled monolayer with ethylenediaminetetraacetic acid as a novel nanosensor, Anal. Chim. Acta, 587 (2007) 254-262.

DOI: 10.1016/j.aca.2007.01.053

Google Scholar

[84] J. Madhusudhannan, S. Sandhya, S. Malathi, Folate Mediated Drug Delivery using Nanoparticle, Asian J. Pharm. Tech. 3 (2013) 155-160.

Google Scholar

[85] A. Llevot, D. Astruc, Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer, Chem. Soc. Rev. 41 (2012) 242-257.

DOI: 10.1039/c1cs15080d

Google Scholar

[86] J. Pan, S-S Feng, Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers, Biomaterials 30 (2009) 1176-1183.

DOI: 10.1016/j.biomaterials.2008.10.039

Google Scholar

[87] E. K. Shanle, W. Xu, Selectively targeting Estrogen Receptors for Cancer Treatment, Adv. Drug Deliver. Rev. 62 (2010) 1265-1276.

DOI: 10.1016/j.addr.2010.08.001

Google Scholar

[88] P. Katsamba, I. Naratilova, M. Calderon-Cacia, L. Fan, K. Thonton, M. Zhu, T. Bos, C. Forte, D. Friend, I. Laird-Offringa, G. Tavares, J. Whatley, E. Shi, A. Widom, K. Lindquist, S. Klakamp, A. Drake, D. Bohmann, M. Roell, L. Rose, J. Dorocke, B. Roth, B. Luginbuhl, D. Myszka, Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users, Anal. Biochem. 352 (2006).

DOI: 10.1016/j.ab.2006.01.034

Google Scholar

[89] R. Rich, D. Myszka, Survey of the year 2007 commercial optical biosensor literature, J. Mol. Recognition, 21 (2008) 355-400.

DOI: 10.1002/jmr.928

Google Scholar