PDMS Surface Modification Using Biomachining Method for Biomedical Application

Article Preview

Abstract:

Engineering a cell-friendly material in a form of lab-on-chip is the main goal of this study. The chip was made of polydimethyl siloxane (PDMS) with a surface modification to realize a groovy structure on its surface. This groovy surface was naturally and randomly designed via biomachining process. This measure was aimed to improve the cell attachment on the PDMS surface that always known as hydrophobic surface. The biomachined surface of mold and also products were characterized as surface roughness and wettability. The result shows that the biomachining process were able to be characterized in three classes of roughness on the surface of PDMS.

You might also be interested in these eBooks

Info:

Pages:

66-72

Citation:

Online since:

February 2016

Export:

Price:

* - Corresponding Author

[1] G. M. Whitesides, The origins and the future of microfluidics, Nature, 442 (2006) 368-373.

Google Scholar

[2] S. Zhang, Beyond the Petri dish, Nat. Biotechnol., 22 (2004) 151-152.

Google Scholar

[3] D. D. Carlo, L. P. Lee, Dynamic single-cell analysis for quantitative biology, Anal. Chem., 78 (2006) 7918-7925.

DOI: 10.1021/ac069490p

Google Scholar

[4] M. C. Kim, Z. Wang, R. H. Lam, T. Thorsen, Building a better cell trap: Applying Lagrangian modeling to the design of microfluidic devices for cell biology, J. Appl. Phys., 103 (2008) 044701.

DOI: 10.1063/1.2840059

Google Scholar

[5] H. Andersson, A. van den Berg, Microfluidic devices for cellomics: a review, Sensor Actuat. B- Chem., 92 (2003) 315-325.

DOI: 10.1016/s0925-4005(03)00266-1

Google Scholar

[6] M. Nikkhah, F. Edalat, , S. Manoucheri, A. Khademhosseini, Engineering microscale topographies to control the cell–substrate interface, Biomaterials, 33 (2012) 5230-5246.

DOI: 10.1016/j.biomaterials.2012.03.079

Google Scholar

[7] J. Zhou, , A. V. Ellis, N. H. Voelcker, Recent developments in PDMS surface modification for microfluidic devices, Electrophoresis, 31 (2010) 2-16.

DOI: 10.1002/elps.200900475

Google Scholar

[8] H. Makamba, J. H. Kim, K. Lim, N. Park, J H. Hahn, Surface modification of poly (dimethylsiloxane) microchannels, Electrophoresis, 24 (2003) 3607-3619.

DOI: 10.1002/elps.200305627

Google Scholar

[9] S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, N. Allbritton, N., Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting, Anal. Chem., 74 (2002) 4117-4123.

DOI: 10.1021/ac025700w

Google Scholar

[10] K. Efimenko, W. E. Wallace, J., Genzer, Surface modification of Sylgard-184 poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment, J. Colloid Interf. Sci., 254 (2002) 306-315.

DOI: 10.1006/jcis.2002.8594

Google Scholar

[11] H. M. Tan, H. Fukuda, T. Akagi, T. Ichiki, T. Surface modification of poly (dimethylsiloxane) for controlling biological cells' adhesion using a scanning radical microjet, Thin Solid Films, 515 (2007) 5172-5178.

DOI: 10.1016/j.tsf.2006.10.026

Google Scholar

[12] S. Sugiura, J. I. Edahiro, K. Sumaru, T. Kanamori, Surface modification of polydimethylsiloxane with photo-grafted poly (ethylene glycol) for micropatterned protein adsorption and cell adhesion, Colloid Surface B, 63 (2008) 301-305.

DOI: 10.1016/j.colsurfb.2007.12.013

Google Scholar

[13] Y. Wu, Y. Huang, H. Ma, A facile method for permanent and functional surface modification of poly (dimethylsiloxane), J. Am. Chem. Soc., 129 (2007) 7226-7227.

DOI: 10.1021/ja071384x

Google Scholar

[14] I. Wong, C. M. Ho, Surface molecular property modifications for poly (dimethylsiloxane) (PDMS) based microfluidic devices, Microfluid. Nanofluid., 7 (2009) 291-306.

DOI: 10.1007/s10404-009-0443-4

Google Scholar

[15] J. Istiyanto, A. S. Saragih, T. J. Ko, Metal based micro-feature fabrication using biomachining process, Microelectron. Eng., 98 (2012) 561-565.

DOI: 10.1016/j.mee.2012.07.002

Google Scholar