Fabrication of High Dense ZnSe Ceramic by Spark Plasma Sintering: The Effect of the Powder Process Method

Article Preview

Abstract:

Zinc Selenide ceramic was successfully fabricated by spark plasma sintering in the study. The ZnSe raw powders were handled with two different methods such as grinding and planetary ball milling, respectively. The relative density, microstructure and transmittance of the ZnSe ceramic sintered under the same sintering parameter with two type powders was investigated. The results shown that the performance of the powder processed by ball milling was more effective than that by grinding. Furthermore, the maximum relative density can reach 99.8% when the ZnSe powder treated by ball milling were sintered at 950 oC for 30 min with the heating rate of 10 oC/min under 100 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

661-666

Citation:

Online since:

August 2018

Export:

Price:

* - Corresponding Author

[1] S.B. Mirov, V.V. Fedorov, D. Martyshkin, I.S. Moskalev, M. Mirov, S. Vasilyev. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides. IEEE Journal of selected topics in quantum electronics. (2015) 21 (1).

DOI: 10.1109/jstqe.2014.2346512

Google Scholar

[2] K. Yoshino, H. Mikami,K. Imai,M. Yoneta, T.Ikari. Optical characterization of native defects in ZnSe substrate. Physica B (2001) 302: 299-306.

DOI: 10.1016/s0921-4526(01)00444-6

Google Scholar

[3] A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin. Hot-pressed ceramic Cr2+: ZnSe gain-switched laser. Optics Express (2006) 14(24): 11694-11701.

DOI: 10.1364/oe.14.011694

Google Scholar

[4] J. W. Evans, Iron--doped zinc selenide: Spectroscopy and laser development. Dissertations &Theses (2014) Gradworks.

Google Scholar

[5] D. V. Martyshkin, J. T. Goldstein, V. V. Fedorov, S. B. Mirov,Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials.Optics Letters (2011) 36(9): 1530-1532.

DOI: 10.1364/ol.36.001530

Google Scholar

[6] U. Demirbas, A. Sennaroglu, M. Somer. Synthesis and characterization of diffusion-doped Cr2+: ZnSe and Fe2+: ZnSe. Optical Materials (2006) 28(3): 231-240.

DOI: 10.1016/j.optmat.2004.10.022

Google Scholar

[7] R. W. Tustison, D. C. Harris. Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows. (2007) 6545: 654502.

DOI: 10.1117/12.716808

Google Scholar

[8] O. Gafarov, A. Martinez, V. Fedorov, S. Mirov. Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing. Optical Materials Express (2017) 7 (1): 25-31.

DOI: 10.1364/ome.7.000025

Google Scholar

[9] YY. Li, Y. Liu, V.V. Fedorov, S.B. Mirov, YQ, Wu. Hot-pressed chromium doped zinc sulfide infrared transparent ceramics. Scripta Materialia (2016) 125: 15-18.

DOI: 10.1016/j.scriptamat.2016.07.027

Google Scholar

[10] CY. Li, TF Xie, HM. Kou, YB. Pan, J. Li. Hot-pressing and post-HIP treatment of Fe2+:ZnS transparent ceramics from co-precipitated powders. Journal of the European Ceramic Society (2017) 37 (5): 2253-2257.

DOI: 10.1016/j.jeurceramsoc.2016.12.051

Google Scholar

[11] SZ. Zhu, M. A. Hongli, R. Jean, M. C. Odile, A. Jean-Luc, L. Jacques, Z. Xianghua. Preparation and hot pressing of ZnS nano powders for producing transparent ceramics. Optoelectronics and Advanced Materials-Rapid Communications. (2007).

Google Scholar

[12] G. Zhou: PhD thesis, ZnSe ceramics and phosphate glasses for optical applications in the visible and infrared ranges. (2014) Rennes 1 University, France.

Google Scholar

[13] J. P. Kelly, O. A. Graeve, Effect of powder characteristics on nanosinterings, in sintering mechanisms of convention nanodensification and field assisted processes (edited by H. Ricardo, R. Castro and Klaus Van Benthem). (2013).

DOI: 10.1007/978-3-642-31009-6

Google Scholar

[14] V. V. Skorokhod, Rapid rate sintering of dispersed systems: theory, processing, and problems. Powder Metallurgy and Metal Ceramics (1999) 38: 7-8.

DOI: 10.1007/bf02676168

Google Scholar

[15] LQ. An, A. Ito, T. Goto. Highly transparent lutetium oxide produced by spark plasma sintering. Jouranl of the European Ceramic Society (2011) 31(1-2): 237-240.

DOI: 10.1016/j.jeurceramsoc.2010.09.010

Google Scholar