Supply Chain Design of Manufacturing Processes with Blending Technologies

Article Preview

Abstract:

Blending technologies play an important role in manufacturing. The design and operation of manufacturing processes using blending technologies represent a special range of manufacturing related logistics because the integrated approach of technological and logistic parameters is very significant. This research proposes an integrated model of supply of manufacturing processes using blending technologies. After a careful literature review, this paper introduces a mathematical model to formulate the problem of supply chain design for blending technologies. The integrated model includes the optimal purchasing strategy depending on the characteristics of components to be mixed in the desired proportion and the costs of supply. The integrated model will be described as a linear programming problem. Numerical results with different datasets demonstrate how the proposed model takes technological and logistic aspects into consideration.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 261)

Pages:

509-515

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] N. A. Yunus, Z. A. Manan, Optimizations of blending–based products, Comput. Aided Chem. Eng. 39 (2017) 475-486.

Google Scholar

[2] G. Paredes-Belmar, A. Lüer-Villagra, V. Marianov, C. E. Cortés, The milk collection problem with blending and collection points, Comput. Electron. Agric. 134 (2017) 109-123.

DOI: 10.1016/j.compag.2017.01.015

Google Scholar

[3] W. Wan, L. T. Biegler, Structured regularization for barrier NLP solvers, Comput. Optim. Appl. 66(1) (2017) 401-424.

DOI: 10.1007/s10589-016-9880-7

Google Scholar

[4] B. T. Baumrucker, J.G. Renfro, L. T. Biegler, MPEC problem formulations and solution strategies with chemical engineering applications, Comput. Chem. Eng. 32(12) (2008) 2903-2913.

DOI: 10.1016/j.compchemeng.2008.02.010

Google Scholar

[5] E. Moreno, M. Rezakhah, A. Newman, F. Ferreira, Linear models for stockpiling in open-pit mine production scheduling problems, Eur. J. Oper. Res. 260(1) (2017) 212-221.

DOI: 10.1016/j.ejor.2016.12.014

Google Scholar

[6] S. P. Kolodziej, I.E. Grossmann, K. C. Furman, N. W. Sawaya, A discretization-based approach for the optimization of the multiperiod blend scheduling problem, Comput. Chem. Eng. 53 (2013) 122-142.

DOI: 10.1016/j.compchemeng.2013.01.016

Google Scholar

[7] I. Lotero, F. Trespalacios, I. E. Grossmann, D. J. Papageorgiou, An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem, Comput. Chem. Eng. 87 (2016) 13-35.

DOI: 10.1016/j.compchemeng.2015.12.017

Google Scholar

[8] S. Cignitti, L. Zhang, R. Gani, Computer-aided framework for design of pure, mixed and blended products, Comput. Aided Chem. Eng. 37 (2015) 2093-(2098).

DOI: 10.1016/b978-0-444-63576-1.50043-1

Google Scholar

[9] A. A. Anosov, G. L. Efitov, S. D. Zusman, N-line gasoline blending optimization with in-flow blend quality analysis, Automat. Rem. Contr. 78(3) (2017) 515-524.

DOI: 10.1134/s0005117917030110

Google Scholar

[10] B. J. Zhang, Q. L. Chen, C. A. Floudas, Operational strategy and planning for raw natural gas refining complexes: Process modeling and global optimization, AIChE J. 63(2) (2017) 652-668.

DOI: 10.1002/aic.15416

Google Scholar

[11] C. A. Floudas, A. M. Niziolek, O. Onel, L. R. Matthews, Multi-scale systems engineering for energy and the environment: Challenges and opportunities, AIChE J. 62(3) (2017) 602-623.

DOI: 10.1002/aic.15151

Google Scholar

[12] I.E. Grossmann, A. W. Westerberg, Research challenges in Process Systems Engineering, AIChE J. 46(9) (2000) 1700-1703.

DOI: 10.1002/aic.690460902

Google Scholar