Valence-Mending Passivation of Si(100) Surface: Principle, Practice and Application

Article Preview

Abstract:

Surface states have hindered and degraded many semiconductor devices since the Bardeen era. Surface states originate from dangling bonds on the surface. This paper discusses a generic solution to surface states, i.e. valence-mending passivation. For the Si (100) surface, a single atomic layer of valence-mending sulfur, selenium or tellurium can terminate ~99% of the dangling bonds, while group VII fluorine or chlorine can terminate the remaining 1%. Valence-mending passivation of Si (100) has been demonstrated using CVD, MBE and solution passivation. The keys to valence-mending passivation include an atomically-clean Si (100) surface for passivation and precisely one monolayer of valence-mending atoms on the surface. The passivated surface exhibits unprecedented properties. Electronically the Schottky barrier height between various metals and valence-mended Si (100) now follows more closely the Mott-Schottky theory. With metals of extreme workfunctions, new records for low and high Schottky barriers are created on Si (100). The highest barrier so far is 1.14 eV, i.e. a larger-than-bandgap barrier, and the lowest barrier is below 0.08 eV and potentially negative. Chemically silicidation between metal and valence-mended Si (100) is suppressed up to 500 °C, and the thermally-stable record Schottky barriers enable their applications in nanoelectronic, optoelectronic and photovoltaic devices. Another application is transition metal dichalcogenides. Valence-mended Si (100) is an ideal starting surface for growth of dichalcogenides, as it provides only van der Waals bonding to the dichalcogenide.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

51-60

Citation:

Online since:

October 2015

Authors:

Export:

Price:

* - Corresponding Author

[1] J.E. Rowe, M.M. Traum, N.V. Smith, Measurement of dangling-bond photoemission from cleaved silicon, Phys. Rev. Lett. 33 (1974) 1333-1335.

DOI: 10.1103/physrevlett.33.1333

Google Scholar

[2] H.R. Huff, John Bardeen and transistor physics, in: D.E. Seiler (Ed. ), Characterization and Metrology for ULSI Technology, AIP Conf. Proc. 550 (2001) 3-29.

Google Scholar

[3] A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor systems, J. Appl. Phys. 36 (1965) 3212-3220.

DOI: 10.1063/1.1702952

Google Scholar

[4] E. Arnold, J. Ladell, G. Abowitz, Crystallographic symmetry of surface density in thermally oxidized silicon, Appl. Phys. Lett. 13 (1968) 413-416.

DOI: 10.1063/1.1652496

Google Scholar

[5] E. Kaxiras, Semiconductor-surface restoration by valence-mending adsorbates: Application to Si(100): S and Si(100): Se, Phys. Rev. B 43 (1991) 6824-6827.

DOI: 10.1103/physrevb.43.6824

Google Scholar

[6] H. Zhang, A. Saha, W. -C. Sun, M. Tao, Characterization of Al/Si junctions on Si(100) wafers with chemical vapor deposition based sulfur passivation, Appl. Phys. A: Mat. Sci. Process. 116 (2014) 2031-(2038).

DOI: 10.1007/s00339-014-8390-7

Google Scholar

[7] M. Tao, D. Udeshi, N. Basit, E. Maldonado, W.P. Kirk, Removal of dangling bonds and surface states on Si(001) surface by a monolayer of Se, Appl. Phys. Lett. 82 (2003) 1559-1561.

DOI: 10.1063/1.1559418

Google Scholar

[8] M. Y. Ali, M. Tao, Passivation of Si(100) surface by S from solution, Electrochem. Solid-State Lett. 10 (2007) H317-320.

DOI: 10.1149/1.2771079

Google Scholar

[9] H. Metzner, T. Haln, J.H. Bremer, Structure of sulfur-terminated silicon surfaces, Surf. Sci. 377-379 (1997) 71-74.

DOI: 10.1016/s0039-6028(96)01356-8

Google Scholar

[10] A. Papageorgopoulos, A. Corner, M. Kamaratos, C.A. Papageorgopoulos, Adsorption of elemental S on Si(100) 2×1: Surface restoration, Phys. Rev. B 55 (1997) 4435-4441.

DOI: 10.1103/physrevb.55.4435

Google Scholar

[11] A.C. Papageorgopoulos, M. Kamaratos, Adsorption and desorption of Se on Si(100) 2×1: Surface restoration, Surf. Sci. 466 (2000) 173-182.

DOI: 10.1016/s0039-6028(00)00759-7

Google Scholar

[12] J.P. Lacharme, N. Benazzi, C.A. Sebenne, Compositional and electronic properties of Si(001) 2×1 upon diatomic sulfur interaction, Surf. Sci. 433-435 (1999) 415-419.

DOI: 10.1016/s0039-6028(99)00450-1

Google Scholar

[13] M. Tao, E. Maldonado, W.P. Kirk, Monolayer passivation of silicon(001) surface by selenium, Appl. Surf. Sci. 253 (2007) 4578-4580.

DOI: 10.1016/j.apsusc.2006.10.013

Google Scholar

[14] J. Zhu, M. Nadesalingam, A.H. Weiss, M. Tao, Stability of Se passivation layers on Si(001) surfaces characterized by time-of-flight positron annihilation induced Auger electron spectroscopy, J. Appl. Phys. 97 (2005) 103510-1-4.

DOI: 10.1063/1.1897488

Google Scholar

[15] H.B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys. 48 (1977) 4729-4733.

Google Scholar

[16] M.Y. Ali, M. Tao, Effect of S passivation on Schottky barrier height on Si(100): Surface states vs. surface dipole, J. Appl. Phys. 101 (2007) 103708-1-5.

DOI: 10.1063/1.2733611

Google Scholar

[17] M. Tao, S. Agarwal, D. Udeshi, N. Basit, E. Maldonado, W.P. Kirk, Low Schottky barriers on n-type Si(001), Appl. Phys. Lett. 83 (2003) 2593-2595.

DOI: 10.1063/1.1613357

Google Scholar

[18] K. -M. Guenther, H. Witte, A. Krost, S. Kontermann, W. Schade, Extracting accurate capacitance voltage curves from impedance spectroscopy, Appl. Phys. Lett. 100 (2012) 42101-1-4.

DOI: 10.1063/1.3679380

Google Scholar

[19] G. Song, M.Y. Ali, M. Tao, A high Schottky barrier between Ni and S-passivated n-type Si(100) surface, Solid State Electron. 52 (2008) 1778-1781.

DOI: 10.1016/j.sse.2008.07.008

Google Scholar

[20] J. Zhu, X. Yang, M. Tao, Low-resistance Ti/n-type Si(100) contacts by monolayer Se passivation, J. Phys. D: Appl. Phys. 40 (2007) 547-550.

DOI: 10.1088/0022-3727/40/2/031

Google Scholar

[21] M. Tao, J. Shanmugam, M. Coviello, W.P. Kirk, Supression of Si(001) surface reactivity using a valence-mending technique, Solid State Comm. 132 (2004) 89-92.

DOI: 10.1016/j.ssc.2004.07.031

Google Scholar

[22] H. Foll, P.S. Ho, K.N. Tu, Transmission electron microscopy of the formation of Ni silicides, Phil. Mag. A 45 (1981) 31-47.

Google Scholar

[23] D. Udeshi, E. Maldonado, Y. Xu, M. Tao, W.P. Kirk, Thermal stability of Ohmic contacts between Ti and Se-passivated n-type Si(001), J. Appl. Phys. 95 (2004) 4219-4222.

DOI: 10.1063/1.1687047

Google Scholar

[24] D.K. Schroder, Semiconductor Material and Device Characterization, second ed., Wiley, New York, (1998).

Google Scholar

[25] G. Song, M.Y. Ali, M. Tao, A high Schottky barrier of 1. 1 eV between Al and S-passivated p-type Si(100) surface, IEEE Electron Device Lett. 28 (2007) 71-73.

DOI: 10.1109/led.2006.887942

Google Scholar

[26] A. Saha, H. Zhang, W. -C. Sun, M. Tao, Grain boundary passivation in multicrystalline silicon using hydrogen sulfide, ECS J. Solid State Sci. Techno. 4 (2015) P186-P189.

DOI: 10.1149/2.0301505jss

Google Scholar

[27] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105 (2010) 136805-1-4.

DOI: 10.1103/physrevlett.105.136805

Google Scholar