Surface Plasmon Polaritons and Inverse Faraday Effect

Article Preview

Abstract:

t is shown that the inverse Faraday effect appears in the case of surface plasmon polariton propagation near a metal-paramagnetic interface. The inverse Faraday effect in nanostructured periodically perforated metaldielectric films increases because of the excitation of surface plasmon polaritons. In this case, a stationary magnetic field is amplified by more than an order of magnitude compared to the case of a smooth paramagnetic film. The distribution of an electromagnetic field is sensitive to the wavelength and the angle of incidence of light, which allows one to efficiently control the local magnetization arising due to the inverse Faraday effect.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

369-372

Citation:

Online since:

June 2012

Export:

Price:

[1] J. P. Van der Ziel, P. S. Pershan, and L. D. Malmstrom, Optically-induced magnetization resulting from the inverse Faraday effect, Phys. Rev. Lett. 15, (1965) 190-193.

DOI: 10.1103/physrevlett.15.190

Google Scholar

[2] Y. Zhang and J. Bai, High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights, Phys. Lett. A 372 (2008) 6294-6297.

DOI: 10.1016/j.physleta.2008.08.048

Google Scholar

[3] C. D. Stanciu, F. Hansteen, A. V. Kimel, et al., Phys. Rev. Lett. 99, 047601 (2007).

Google Scholar

[4] A. V. Kimel, A. Kirilyuk, P. Usachev, et al., Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses, Nature 435 (2005) 655-657.

Google Scholar

[5] A. Sh. Abdulaev and A. A. Frolov, Pis'ma Zh. Eksp. Teor. Fiz . 33, 107 (1981) [JETP Lett. 33, 101 (1981)].

Google Scholar

[6] I. V. Sokolov, Usp. Fiz. Nauk 161 (10), 175 (1991) [Sov. Phys. Usp. 34, 925 (1991)].

Google Scholar

[7] Akhtar. Yasin, M. Raja, D. Allen, and W. Sisk, Room-temperature inverse Faraday effect in terbium gallium garnet, Appl. Phys. Lett. 67 (1995) 2123-2125.

DOI: 10.1063/1.114740

Google Scholar

[8] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, New York, 1988).

DOI: 10.1007/bfb0048319

Google Scholar

[9] V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, et al., Inverse Faraday effect in plasmonic heterostructures, J. Phys.: Conf. Ser. 200, 092003 (2010).

DOI: 10.1088/1742-6596/200/9/092003

Google Scholar

[10] L. Li, Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors, J. Opt. A: Pure Appl. Opt., No. 5 (2003) 345-355.

DOI: 10.1088/1464-4258/5/4/307

Google Scholar

[11] P. Biagioni, J. S. Huang, L. Duo, et al., Cross resonant optical antenna, Phys. Rev. Lett. 102, 256801 (2009).

Google Scholar

[12] D. Palik, Handbook of Optical Constants of Solids, Edward Acad., Orlando, FL, (1985).

Google Scholar