The Exoskeleton of the American Lobster – From Texture to Anisotropic Properties

Article Preview

Abstract:

The exoskeleton of the crustacean Homarus americanus, the American lobster, is a biological multiphase composite consisting of a crystalline organic matrix (chitin), crystalline biominerals (calcite), amorphous calcium carbonate and proteins. One special structural aspect is the occurrence of pronounced crystallographic orientations and resulting directional anisotropic mechanical properties. The crystallographic textures of chitin and calcite have been measured by wide-angle Bragg diffraction, calculating the Orientation Distribution Function (ODF) from pole figures by using the series expansion method according to Bunge. A general strong relationship can be established between the crystallographic and the resulting mechanical and physical properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 160)

Pages:

287-294

Citation:

Online since:

February 2010

Export:

Price:

[1] L. Raue: Kristallographische Texturen und richtungsabhängige mechanische Eigenschaften des Exoskeletts des amerikanischen Hummers sowie Texturen weiterer Biomaterialien. mbv Verlag Mensch & Buch, Berlin (2008).

Google Scholar

[2] D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S. -B. Yi, G. Servos and H. G. Hartwig: Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mat. Sc. and Eng. A Vol. 421 (2006).

DOI: 10.1016/j.msea.2005.09.115

Google Scholar

[3] J. Vernberg and W. B. Vernberg: The Biology of Crustacea. Academic Press, New York, USA (1983).

Google Scholar

[4] J. F. V. Vincent: Structural Biomaterials. Princeton University Press, USA (1990).

Google Scholar

[5] M. Epple: Biomineralien und Biomineralisation. Teubner Verlag, Germany (2003).

Google Scholar

[6] J. F. V. Vincent and J. D. Currey (editors): Mechanical Properties of Biological Materials. Society for Experimential Biology, Cambridge, UK (1980).

Google Scholar

[7] C. Sachs, H. Fabritius and D. Raabe: Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. J. Str. Biol. Vol. 155 (2006), pp.409-425.

DOI: 10.1016/j.jsb.2006.06.004

Google Scholar

[8] C. Sachs, H. Fabritius and D. Raabe: Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J. Mat. Res. Vol. 21 (2006), p.1987-(1995).

DOI: 10.1557/jmr.2006.0241

Google Scholar

[9] H. J. Bunge: Texture Analysis in Materials Science. 2nd ed., Cuvillier Verlag, Göttingen, Germany (1993).

Google Scholar

[10] D. Raabe: Computational Materials Science. Wiley-VCH, Weinsberg, Germany (1998).

Google Scholar

[11] N. J. Park, H. Klein and E. Dahlem-Klein: Program System: Physical Properties of Textured Materials. Editor H. J. Bunge, 2nd edition, Cuvillier Verlag, Göttingen, Germany (2001).

Google Scholar

[12] R. D. Roer and R. M. Dillaman: The structure and calcification of the crustacean cuticle. Am. Zool. Vol. 24 (1984), pp.893-909.

DOI: 10.1093/icb/24.4.893

Google Scholar

[13] Landolt-Börnstein: Second and Higher Order Elastic Constants, Group III Condensed Matter. Vol. 29a (2006), pp.139-153. Springer-Verlag, Germany.

DOI: 10.1007/10046537_23

Google Scholar

[14] E. Kröner: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Physik Vol. 151 (1958), pp.504-518.

DOI: 10.1007/bf01337948

Google Scholar

[15] M. -M. Giraud-Guille: Plywood structures in nature. Curr. Opin. Solid State Mater. Sci. Vol. 3 (1998), pp.221-228.

Google Scholar

[16] D. Raabe, P. Romano, A. Al-Sawalmih, C. Sachs, H. -G. Brokmeier, S. -B. Yi, G. Servos and H. G. Hartwig: Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nano-composite tissue. J. Cryst. Growth Vol. 283 (2005).

DOI: 10.1016/j.jcrysgro.2005.05.077

Google Scholar

[17] R. Minke and J. Blackwell: The Structure of alpha-chitin. J. Mol. Biol. Vol. 128 (1977), pp.167-181.

Google Scholar

[18] W. Helbert and J. Sugijama: High-resolution electron microscopy on cellulose II and alpha chitin single crystals. Cellulose Vol. 5 (1997), pp.113-122.

Google Scholar

[19] H. J. Bunge: Mathematische Methoden der Texturanalyse. Akademie-Verlag, Berlin, Germany (1969).

Google Scholar

[20] E. Dahlem-Klein, H. Klein and N. J. Park: Program System: ODF Analysis. Editor H. J. Bunge. Cuvillier Verlag, Göttingen, Germany (1993).

Google Scholar

[21] N. -J. Park and H. J. Bunge: Determination of the Orientation Distribution Function of a CuZnAl Shape Memory Alloy. Z. Metallkunde Vol. 81 (1990), pp.636-645.

DOI: 10.1515/ijmr-1990-810904

Google Scholar

[22] N. -J. Park and H. J. Bunge: An ODF-Analysis Program for Orthorhombic Crystal Symmetry and its Application to CuZnAl Shape Memory Alloys. Textures and Microstructures Vol. 1418 (1991), 231-240.

DOI: 10.1155/tsm.14-18.231

Google Scholar

[23] N. -J. Park: Untersuchung der Texturtransformation von CuZnAl Shape-Memory-Legierungen. PhD Thesis. TU Clausthal, Germany (1992).

Google Scholar

[24] M. Dahms, N. -J. Park and H. J. Bunge: Texture Analysis in the Monoclinic Martensitic Phase of a CuZnAl Shape Memory Alloy. Mat. Sc. Forum Vol. 157-162 (1994), pp.507-514.

DOI: 10.4028/www.scientific.net/msf.157-162.507

Google Scholar

[25] N. -J. Park and H. J. Bunge: Texture, Texture Transformation and Properties of CuZnAl Shape Memory Alloys. Mat. Sc. Forum Vol. 273-275 (1998), pp.547-552.

DOI: 10.4028/www.scientific.net/msf.273-275.547

Google Scholar

[26] W. Voigt: Lehrbuch der Kristallphysik. Teubner, Leipzig, Germany (1928).

Google Scholar

[27] A. Reuss: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. Vol. 9 (1929), pp.49-58.

DOI: 10.1002/zamm.19290090104

Google Scholar

[28] R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phy. Soc. Vol. A65 (1952), pp.349-354.

Google Scholar

[29] N. -J. Park and H. J. Bunge: Determination of Young's Modulus in textured CuZnAl Shape Memory Alloys. Mat. Sc. Forum Vol. 157-162 (1994), pp.1663-1670.

DOI: 10.4028/www.scientific.net/msf.157-162.1663

Google Scholar

[30] N. -J. Park, H. J. Bunge, H. Kiewel and L. Fritsche: Calculation of Effective Elastic Moduli of Textured Materials. Textures and Microstructures Vol. 23 (1995), 43-59.

DOI: 10.1155/tsm.23.43

Google Scholar

[31] L. Raue, H. Klein, D. Raabe and H. Fabritius: Crystallographic Textures from the Exoskeleton of the Lobster Homarus Americanus and Calculation of the Mechanical Properties of the Calcite Phase. In A.D. Rollett (ed. ): Proc. 15 th Intern. Conf. on Textures of Materials (ICOTOM 15), Part 2. Ceramic Transactions Vol. 201 (2009).

DOI: 10.1002/9780470444214.ch69

Google Scholar