Monte Carlo Simulation of Texture and Microstructure Transformation during Annealing of Steel

Article Preview

Abstract:

Controlling texture and microstructure evolution during annealing processes is very important for optimizing properties of steels. Theories used to explain annealing processes are complicated and always case dependent. An recently developed Monte Carlo simulation based model offers an effective tool for studying annealing process and can be used to verify the arbitrarily defined theories that govern such processes. The computer model takes Orientation Image Microscope (OIM) measurements as an input. The abundant information contained in OIM measurement allows the computer model to incorporate many structural characteristics of polycrystalline materials such as, texture, grain boundary character, grain shape and size, phase composition, chemical composition, stored elastic energy, and the residual stress. The outputs include various texture functions, grain boundary and grain size statistics that can be verified by experimental results. Graphical representation allows us to perform virtual experiments to monitor each step of the structural transformation. An example of applying this simulation to Si steel is given.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 129)

Pages:

83-87

Citation:

Online since:

November 2007

Export:

Price:

[1] W. A. Johnson and R. F. Mehl: Trans. AIME, Vol. 135 (1939), p.416.

Google Scholar

[2] M. Avrami : J. Chem. Phys., Vol. 7 (1939). p.1103.

Google Scholar

[3] R. A. Vandermeer: Scripta metal., Vol. 27 (1992), p.1563.

Google Scholar

[4] D. J. Srolovitz, G. S. Grest and M. P. Anderson: Acta metal., Vol. 34 (1986), p.1833.

Google Scholar

[5] K. Marthinsen, O. Lohne and E. Nes: Acta metal., Vol. 37 (1989), p.135.

Google Scholar

[6] P. Tavernier and J. A. Szpunar: Acta metall. mater., Vol. 39 (1991), p.549.

Google Scholar

[7] N. Rajmonhan, J. A. Szpunar and Y. Hayakawa: Texture and Microstructures, Vol. 32 (1999), p.153.

Google Scholar

[8] N. Rajmonhan and J. A. Szpunar: Materials Science & Engineering, Vol. A289 (2000), p.3327.

Google Scholar

[9] Y. Hayakawa and J.A. Szpunar: Acta Mater. Vol. 45 (1997), p.4713.

Google Scholar

[10] Y. Hayakawa and J.A. Szpunar: Acta Mater. Vol. 45 (1997), p.1285.

Google Scholar

[11] N. Rajmohan, J.A. Szpunar and Y. Hayakawa: Acta Mater. Vol. 47 (1999), p.2999.

Google Scholar

[12] N. Rajmohan and J.A. Szpunar: Scripta Mater. Vol. 44 (2001), p.2387.

Google Scholar

[13] Y. Hayakawa, M. Muraki and J.A. Szpunar: Acta Mater. Vol. 46 (1998), p.1063.

Google Scholar

[14] M.P. Anderson, D.J. Srolovitz , G.S. Grest, P.S. Sahni: Acta metall. Vol. 32 (1984), p.783.

Google Scholar

[15] P. Tavernier and J.A. Szpunar: Acta metall. mater., Vol. 39 (1991), p.557.

Google Scholar

[16] H. Li, J. Park, and J. A. Szpunar: TMS Letters TMS (The Minerals, Metals & Materials Society), (2004).

Google Scholar

[17] D. Hinz and J.A. Szpunar: Phys Rev B Vol. 52 (1995), p.9900.

Google Scholar

[18] H. Li, J. Park and J. Szpunar, Materials Science Forum, Vol. 408 (2002), p.335.

Google Scholar