Microstructural Characterization of the Emulsified Cu47Ti33Zr11Ni6Sn2Si1 Alloy Powder

Article Preview

Abstract:

Phase selection and microstructural morphology change of the Cu47Ti33Zr11Ni6Sn2Si1 alloy were investigated through the droplet emulsion technique(DET). The emulsified Cu47Ti33Zr11Ni6Sn2Sil alloy powders showed several different microstructures depending on the amount of undercooling. The amount of undercooling of the powders was monitored by differential thermal analysis and was matched with the microstructures. The phase transition of Cu47Ti33Zr11Ni6Sn2Sil alloy powders according to the increase of undercooling proceeds by the process Cu4Ti3 +CuTi +Cu2Ti +Cu51Zr14 → Cu4Ti3 + CuTi + Cu2Ti + Cu51Zr14 + CuTi2 → Cu2Ti + Cu51Zr14 + CuTi2 → Cu51Zr14 +CuTi2. Specifically, the morphology and scale of the CuTi2 phase were examined by SEM observation, and area fraction measurement using an image analyzer, transmission electron microscopy studies, and microhardness tests showed that the amorphous phase could be synthesized by DET. A microstructure selection map of Cu47Ti33Zr11Ni6Sn2Sil alloy powders for tailored solidification was also suggested.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 118)

Pages:

623-634

Citation:

Online since:

December 2006

Export:

Price:

[1] A. L. Greer, Nature 366 (1993) 303.

Google Scholar

[2] A. Inoue, T Nakamura, T. Sugita, T. Zhang, T. Masumoto, Mater. Trans. JIM 34 (1993) 351.

Google Scholar

[3] L. E. Luborsky (Ed. ), Amorphous Metallic Alloys, Butterworths, London, (1983).

Google Scholar

[4] W. L. Johnson, Mater. Sci. Forum 35 (1996) 225.

Google Scholar

[5] F. M. Alamgir, H. Jain, R. B. Schwarz, 0. Jin, D. B. Williams, J. Non-Cryst. Solids 289-293 (2000) 274.

Google Scholar

[6] A. Inoue, T. Zhang, T. Masumoto, J. Non-Cryst. Solids 156-158 (1993) 473.

Google Scholar

[7] A. Inoue, Mater. Sci. Forum 179-181 (1995) 691.

Google Scholar

[8] X. H. Lin, W. L. Johnson, J. Appl. Phys. 78, (1995) 6514.

Google Scholar

[9] H. Choi-Yim, R. Busch, W. L. Johnson, J. Appl. Phys. 83, (1998) 7993.

Google Scholar

[10] E.S. Park, H. K. Lim, W.T. Kim, D. H. Kim, J. Non-Cryst. Solids 15-22 (2002) 298.

Google Scholar

[11] W. Kurz (Ed. ), Fundamentals of Solidification, (1989).

Google Scholar

[12] J. A. Juarez-Islas, C. Gonzales-Rivera, Y. Zhou, E. J. Lavernia, PRICM 3, (1998) 807.

Google Scholar

[13] J. H. Perepezko, Mat. Sci, Eng. 65 (1984) 1548.

Google Scholar

[14] Ph. D. thesis of W.S. Lee, Korea Univ. (1995).

Google Scholar

[15] Ph. D. thesis of X. H. Lin, Caltech.

Google Scholar

[16] Chunfei Li, Junji Saida, Masaya Kiminami, Akihisa Inoue, J. Non-Cryst. Solids 108-114 (2002) 261.

Google Scholar

[17] Chunfei Li, Junji Saida, Mitsuhide Matsushita, Akihisa Inoue, Mater. Sci. Eng. A. 304-306 (2001) 380-384.

Google Scholar

[18] Daniel J. Sordelet, Matthew J. framer, Matthew F. Besser, Elena Rozhkova, J. Non-Cryst. Solids 163-172 (2001) 290.

Google Scholar

[19] S. C. Glade, J. F. Löffle, S. Bossuyt, W. L. Johnson and M. K. Miller, J. Appl, Phys. 89, 1573 (2001).

Google Scholar

[20] D. H. Bae, H. K. Lim, S. H. Kim, D. H. Kim, W. T. Kim, Acta. Mater. 50 (2002) 1749-1759G.

Google Scholar