Fabrication of the Functionalized Carbon Nanomaterials via Catalytic Pyrolysis of Heteroatom-Containing Compounds

Article Preview

Abstract:

Commercial Ni-Cr and specially prepared Ni-Pd alloys were used as a catalyst’s precursor for the synthesis of the heteroatom-doped carbon nanofibers. In order to provide the intercalation of the doping heteroatom into the structure of the carbon product, the synthesis was performed in the one pot regime, when heteroatom-containing substance was subjected to decomposition simultaneously with carbon source compound. Chlorobenzene, 1-bromobutane, 1-iodobutane, and melamine were used as heteroatom-and carbon-containing sources in the experiments carried out in a closed reactor system. 1,2-dichloriethane, being a source of chlorine and carbon, was decomposed in a flow-through reactor system. Additionally, acetonitrile and carbon dioxide were admixed to 1,2-dichloriethane as nitrogen and oxygen sources. It was found that in all the cases, except for halogenated butanes, the amount of the intercalated heteroatom can reach 3-8 at.%. Both the substrate’s nature and the composition of the reaction mixture were found to affect the morphologic features of the carbon nanostructures produced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

June 2020

Export:

Price:

* - Corresponding Author

[1] I.V. Krasnikova, I.V. Mishakov and A.A. Vedyagin, in: Carbon-Based Nanofiller and Their Rubber Nanocomposites, Elsevier, Amsterdam, Netherlands (2019), pp.75-137.

DOI: 10.1016/b978-0-12-817342-8.00005-6

Google Scholar

[2] R.T.K. Baker, in: Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam, Netherlands (2001), pp.932-941.

Google Scholar

[3] Z. Yang, C. Wang and X. Lu, in: Electrospinning: Nanofabrication and Applications, Elsevier, Amsterdam, Netherlands (2019), pp.53-92.

Google Scholar

[4] N. Yazdani and E. Brown, in: Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering, Elsevier, Amsterdam, Netherlands (2016), pp.47-58.

DOI: 10.1016/b978-1-78242-326-3.00003-8

Google Scholar

[5] Z. Wang, S. Wu, J. Wang, A. Yu and G. Wei: Nanomaterials Vol. 9 (2019), p.1045.

Google Scholar

[6] W.N.N.W. Ali, S. Sufian and M.Z. Abdullah: Procedia Engineer. Vol. 148 (2016), p.795.

Google Scholar

[7] S. Gantayat, D. Rout and S.K. Swain: Materials Today: Proc. Vol. 4 (2017), p.9060.

Google Scholar

[8] H. Varela-Rizo, S. Bittolo-Bon, I. Rodriguez-Pastor, L. Valentini and I. Martin-Gullon: Compos. Part A: Appl. Sci. Manufact. Vol. 43 (2012), p.711.

DOI: 10.1016/j.compositesa.2011.12.017

Google Scholar

[9] E. Dí az, M. Leó n and S. Ordó ñ ez: Int. J. Hydrogen Energ. Vol. 35 (2010), p.4576.

Google Scholar

[10] N.W.A. Wahab, S. Sufian, T.D.N. Van and M.S. Shaharun: Procedia Eng. Vol. 148 (2016), p.136.

Google Scholar

[11] M. Sakthivel, S. Ramaraj, S.-M. Chen, B. Dinesh and K.-H. Chen: J. Taiwan Inst. Chem. Eng. Vol. 82 (2018), p.64.

Google Scholar

[12] T. Wang, S. Shi, Y. Li, M. Zhao, X. Chang, D. Wu, H. Wang, L. Peng, P. Wang and G. Yang: ACS Appl. Mater. Inter. Vol. 8 (2016), p.33091.

Google Scholar

[13] Z. Wang, M. Li, L. Fan, J. Han and Y. Xiong: Appl. Surf. Sci. Vol. 401 (2017), p.89.

Google Scholar

[14] L. Huang, Q. Guan, J. Cheng, C. Li, W. Ni, Z. Wang, Y. Zhang and B. Wang: Chem. Eng. J. Vol. 334 (2018), p.682.

Google Scholar

[15] D. Deng, Y. Tian, H. Li, H. Li, L. Xu, J. Qian, H. Li and Q. Zhang: Appl. Surf. Sci. Vol. 492 (2019) p.417.

Google Scholar

[16] A. Gebrekrstos, G. Madras and S. Bose: ACS Omega Vol. 3 (2018), p.5317.

Google Scholar

[17] X. Liu, Y. Chen, Y. Yao, Q. Bai and Z. Wu: Catal. Sci. Technol. Vol. 8 (2018), p.5482.

Google Scholar

[18] A.F. Ogata, S.-W. Song, S.-H. Cho, W.-T. Koo, J.-S. Jang, Y.J. Jeong, M.-H. Kim, J.Y. Cheong, R.M. Penner and I.-D. Kim: Anal. Chem. Vol. 90 (2018) p.9338.

Google Scholar

[19] M.E. Shabestari, E.N. Kalali, V.J. Gonzá lez, D.-Y. Wang, J.P. Ferná ndez-Blá zquez, J. Baselga and O. Martin: Carbon Vol. 121 (2017) p.193.

Google Scholar

[20] Y. Iizumi, M. Yudasaka, J. Kim, H. Sakakita, T. Takeuchi and T. Okazaki: Sci. Rep. Vol. 8 (2018), p.6272.

Google Scholar

[21] G. Viswanathan, S. Bhowmik, and M. Sharon: Int. J. Mater. Mech. Manuf. Vol. 2 (2014) p.25.

Google Scholar

[22] R.M. Kenzhin, Y.I. Bauman, A.M. Volodin, I.V. Mishakov and A.A. Vedyagin: Mater. Lett. Vol. 179 (2016), p.30.

Google Scholar

[23] R.M. Kenzhin, Y.I. Bauman, A.M. Volodin, I.V. Mishakov and A.A. Vedyagin: Reac. Kinet. Mech. Catal. Vol. 122 (2017), p.1203.

DOI: 10.1007/s11144-017-1273-0

Google Scholar

[24] Y.I. Bauman, I.V. Mishakov, A.A. Vedyagin, A.N. Serkova and A.A. Gromov: Kinet. Catal. Vol. 58 (2017), p.448.

Google Scholar

[25] Y.I. Bauman, Y.V. Shorstkaya, I.V. Mishakov, P.E. Plyusnin, Y.V. Shubin, D.V. Korneev, V.O. Stoyanovskii and A.A. Vedyagin: Catal. Today Vol. 293-294 (2017), p.23.

DOI: 10.1016/j.cattod.2016.11.020

Google Scholar

[26] R.M. Kenzhin, Y.I. Bauman, A.M. Volodin, I.V. Mishakov and A.A. Vedyagin: Appl. Surf. Sci. Vol. 427 (2018), p.505.

Google Scholar