Investigation of Nitrogen Containing Austenitic Stainless Steel

Article Preview

Abstract:

An important factor in solving the problem of stainless steel corrosion resistance is carbon concentration reduction. However, a decrease in carbon content of austenitic steels leads to a drop in level of their strength properties. Theoretically, nitrogen alloying can lead to a strength increase in all types of austenitic corrosion-resistant steels. Practically, nitrogen alloying is effectively only with low-carbon compositions. This work shows the effect of nitrogen on the mechanical properties of middle-alloying nitrogen, containing stainless steel, and a study of AISI 304L and pilot steel with different nitrogen content (from 0.16 to 0.30 wt. %). Nitrogen increases strength of steel, which is approximately 30-60% higher than for steel without nitrogen, but reduces technological plasticity. Pilot steels show high corrosion resistance and fine austenite grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-159

Citation:

Online since:

May 2020

Export:

Price:

* - Corresponding Author

[1] J. Moon, H.-Y. Ha, T.-H. Lee, Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe-18Cr-10Mn-N austenitic stainless steel, Mats Charact. 82 (2013) 113-119.

DOI: 10.1016/j.matchar.2013.05.011

Google Scholar

[2] M. Talha, C.K. Behera, O.P. Sinha, A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mat. Sc. and Eng. 33 (2013) 3563-3575.

DOI: 10.1016/j.msec.2013.06.002

Google Scholar

[3] K.H. Lo, C.H. Shek, J.K.L Lai, Recent developments in stainless steels. Mat. Sc. and Eng. R. 65 (2009) 39-104.

Google Scholar

[4] M.O. Speidel, Properties and applications of high nitrogen steels. In: In: Foct, J. and Hendry, A., ed. High Nitrogen Steels 88. Institute of Metals, London. (1989) 92-96.

Google Scholar

[5] F. Adcock, The effect of nitrogen on chromium and some iron-chromium alloys. J. of Iron and Steel Inst. 114 (1926) 117-126.

Google Scholar

[6] W Tofaute, H. Schottky, Zur Frage des Ersatzes von Nickel in korrosionsbestandigen Chrom-Nickel-Legierungen durch Stickstoff. Tech. MitteilungenKrupp. (1940) 103-110.

DOI: 10.1002/srin.194001318

Google Scholar

[7] A.L. Schaeffler, Constitution diagram for stainless steel weld metal. Met. Prog. 56 (1949) 680-680B.

Google Scholar

[8] C.J. Long, W.T. DeLong, The ferrite of austenite stainless steel. Welding Journal Res. Suppl. 52 (1973) 281s-291s.

Google Scholar

[9] R.H. Espy. Weldability of nitrogen-strengthened stainless steels. Welding Journal Res. Suppl. 61 (1982) 149s- 156s.

Google Scholar

[10] P. Pant, P. Dahlmann, W. Schlump, G. Stein, A new nitrogen alloying technique-A way to distinctly improve the properties of austenitic steel. Steel Research. 58 (1987) 18-25.

DOI: 10.1002/srin.198701482

Google Scholar

[11] H. Bems, S. Siebert, High nitrogen austenitic cases in stainless steels. ISIJ International 36 (1996) 927-931.

DOI: 10.2355/isijinternational.36.927

Google Scholar

[12] I.F. Machado, A.F. Padilha, Precipitation behaviour of 25%Cr-5.5Ni austenitic stainless steel containing 0.87% nitrogen, Steel Research. 67 (1996) 285-290.

DOI: 10.1002/srin.199605492

Google Scholar

[13] I.F. Machado, A.F. Padilha, A.M. Kliauga, Precipitation behaviour of a nitrogenated surface layer of 1.4462 duplex stainless steel, Steel Research. 69 (1998) 381-386.

DOI: 10.1002/srin.199805568

Google Scholar

[14] N. Nakada, N. Hirakawa, T. Tsuchiyama, S. Takaki, Grain refinement of nickel-free high nitrogen austenitic stainless steel by reversion of eutectoid structure. Scripta Mater. 57 (2007) 153-156.

DOI: 10.1016/j.scriptamat.2007.03.022

Google Scholar

[15] K. Ishizaki, K. Mineura, Load frequency dependent fatigue properties in ultrahigh steel and iron. In: Foct, J. and Hendry, A., ed. High Nitrogen Steels 88. Institute of Metals, London. (1989) 204-207.

Google Scholar

[16] J. Dhers, J. Foct, J.-B. Vogt, Influence of nitrogen on fatigue crack growth rate at 77 K and 293 K of 316L steel. In: Foct, J. and Hendry, A., ed. High Nitrogen Steels 88. Institute of Metals, London. (1989) 199-203.

DOI: 10.2355/isijinternational.36.862

Google Scholar

[17] P.R. Reed, Nitrogen in austenitic stainless steels. J. of Miner., Met. and Mater. Soc. 41 (1989) 16-21.

Google Scholar

[18] M.O. Speidel, Properties of high nitrogen steels. In: Stein, G. and Wirulski, H., ed High Nitrogen Steels 90. Verlag Stahleisen, Dusseldorf. (1990) 128-131.

Google Scholar

[19] D.L. Douglass, G. Thomas, W.R. Roser, Ordering, stacking faults and stress cracking in austenitic alloys. Corrosion. 20 (1964) 15-28.

DOI: 10.5006/0010-9312-20.1.15t

Google Scholar

[20] R. Fawley, M.A. Quader, R.A. Dodd, Compositional effects on the deformation modes, annealing twin frequencies, and stacking fault energies of austenitic stainless steels. Tran. of the Met. Soc. of AIME. 242 (1968) 771-776.

Google Scholar

[21] R.E. Schramm, R.P Reed, Stacking fault energies of seven commercial austenitic stainless steels. Met. Tran. 6A (1975) 1345-1351.

DOI: 10.1007/bf02641927

Google Scholar

[22] R.E. Stoltz, J.B. Vander-Sande, The effect of nitrogen on stacking fault energy on Fe-Ni-Cr-Mn steels. Met. Tran. 11A. (1980)1033-1037.

DOI: 10.1007/bf02654717

Google Scholar

[23] T. Lee, C. Oh, S. Kim, Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe-18Cr-10Mn-N steels. Scripta Mat. 58 (2008) 110-113.

DOI: 10.1016/j.scriptamat.2007.09.029

Google Scholar

[24] B. Hwang, T. Lee, S. Park, C. Oh, S. Kim, Correlation of austenite stability and ductile-to-brittle transition behavior of high-nitrogen 18Cr-10Mn austenitic steels. Mat. Sc. and Eng. A. 528 (2011) 7257- 7266.

DOI: 10.1016/j.msea.2011.06.025

Google Scholar

[25] T. Ahn, S. Lee, K. Park, C. Oh, H. Han, Strain-induced s-martensite transformation during nanoindentation of high-nitrogen steel. Mat. Sc. and Eng. A. 598 (2014) 56-61.

DOI: 10.1016/j.msea.2014.01.030

Google Scholar