Technical Evaluation of the Applicability of Gas-Liquid Membrane Contactors for CO2 Removal from CO2 Rich Natural Gas Streams in Offshore Rigs

Article Preview

Abstract:

This work aimed to fulfill a technical evaluation of the applicability of gas-liquid membrane contactors (GLMC) to remove CO2 from CO2 rich natural gas in offshore rigs. For this purpose, a simulation case in HYSYS 8.8 (AspenTech) was performed to remove CO2 from a natural gas stream with concentration of 40% mol CO2 using an aqueous solution of monoethanolamine (MEA) 30% w/w. GLMC unit operation is not available in HYSYS, though. Hence, it was necessary to develop a mathematical model based on log-mean of differences of CO2 fugacities in both phases. Moreover, a GLMC Unit Operation Extension (UOE) was created for GLMC units to run in the process simulator HYSYS 8.8 using its thermodynamic infrastructure. The developed GLMC unit operation extension performed accordingly to the expected behavior. For a gas feed flow rate of 5 MMNm3/d (typical from FPSO's), the calculated total GLMC mass transfer area was 1,986 m2, which requires 14 GLMC modules. Consequently, this operation showed to be a feasible option for CO2 removal in natural gas conditioning on offshore rigs. The heat ratio in the reboilers of CO2 stripping columns was found to be 167 kJ/mol, compatible with data found in the literature of CO2-MEA-H2O systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-38

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] L.O. Arinelli, T.A.F. Trotta, A.M. Teixeira, J.L. de Medeiros, O.Q.F. Araújo, Offshore processing of CO2 rich natural gas with supersonic separator versus conventional routes. J. Nat. Gas. Sci. Eng. 46 (2017) 199-221.

DOI: 10.1016/j.jngse.2017.07.010

Google Scholar

[2] O.Q.F. Araújo, A.C. Reis, J.L. de Medeiros, J.F. do Nascimento, W.M. Grava, A.P.S. Musse, Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields. J. Clean. Prod. 155 (2017) 12-22.

DOI: 10.1016/j.jclepro.2016.06.073

Google Scholar

[3] Honeywell. Honeywell UOP technology is used to clean natural gas on FPSO vessels. Membr. Tech. 5 (2012).

DOI: 10.1016/s0958-2118(12)70011-3

Google Scholar

[4] R.W. Baker, K. Lokhandwala, Natural Gas Processing with Membranes: An Overview, Ind. Eng. Chem. Res. 47 (2008) 2109-2121.

DOI: 10.1021/ie071083w

Google Scholar

[5] J.L. de Medeiros, A. Nakao, W.M. Grava, J.F. do Nascimento, O.Q.F. Araújo, Simulation of an offshore natural gas purification process for CO2 removal with gas-liquid contactors employing aqueous solutions of ethanolamines. Ind. Eng. Chem. Res. 52 (2013) 7074-7089.

DOI: 10.1021/ie302507n

Google Scholar

[6] N. Ghasem, M. Al-Marzouqi, N.A. Rahim, Modeling of CO2 absorption in a membrane contactor considering solvent evaporation. Sep. Purif. Technol. 110 (2013) 1-10.

DOI: 10.1016/j.seppur.2013.03.008

Google Scholar

[7] S. Boributh, W. Rongwong, S. Assabumrungrat, N. Laosiripojana, R. Jiraratananon, Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. J. Memb. Sci. 401 (2012) 175-189.

DOI: 10.1016/j.memsci.2012.01.048

Google Scholar

[8] S. Boributh, S. Assabumrungrat, N. Laosiripojana, R. Jiraratananon, Effect of membrane module arrangement of gas-liquid membrane contacting process on CO2 absorption performance: A modeling study. J. Memb. Sci. 372 (2011) 75-86.

DOI: 10.1016/j.memsci.2011.01.034

Google Scholar

[9] R. Faiz, M. Al-Marzouqi, Insights on natural gas purification: Simultaneous absorption of CO2 and H2S using membrane contactors. Sep. Purif. Technol. 76 (2011) 351-361.

DOI: 10.1016/j.seppur.2010.11.005

Google Scholar

[10] R. Faiz, M.H. El-Naas, M. Al-Marzouqi, Significance of gas velocity change during the transport of CO2 through hollow fiber membrane contactors. Chem. Eng. J. 168 (2011) 593-603.

DOI: 10.1016/j.cej.2011.01.029

Google Scholar

[11] R. Faiz, M. Al-Marzouqi, CO2 removal from natural gas at high pressure using membrane contactors: Model validation and membrane parametric studies. J. Memb. Sci. 365 (2010) 232-241.

DOI: 10.1016/j.memsci.2010.09.004

Google Scholar

[12] M. Al-Marzouqi, M. El-Naas, S. Marzouk, N. Abdullatif, Modeling of chemical absorption of CO2 in membrane contactors. Sep. Purif. Technol. 62 (2008) 499-506.

DOI: 10.1016/j.seppur.2008.02.009

Google Scholar

[13] P. Keshavarz, J. Fathikalajahi, S. Ayatollahi, Mathematical modeling of the simultaneous absorption of carbon dioxide and hydrogen sulfide in a hollow fiber membrane contactor. Sep. Purif. Technol. 63 (2008) 145-155.

DOI: 10.1016/j.seppur.2008.04.008

Google Scholar

[14] V.Y. Dindore, D.W.F. Brilman, G.F. Versteeg, Modeling of cross-flow membrane contactors: physical mass transfer processes. J. Memb. Sci. 251 (2005) 209-222.

DOI: 10.1016/j.memsci.2004.11.017

Google Scholar

[15] V.Y. Dindore, D.W.F. Brilman, G.F. Versteeg, Modeling of cross-flow membrane contactors: Mass transfer with chemical reactions. J. Memb. Sci. 255 (2005) 275-289.

DOI: 10.1016/j.memsci.2005.01.042

Google Scholar

[16] A. Hosseinzadeh, M. Hosseinzadeh, A. Vatani, T. Mohammadi, Mathematical modeling for the simultaneous absorption of CO2 and SO2 using MEA in hollow fiber membrane contactors. Chem. Eng. & Proc.: Proc. Intensif. 111 (2017) 35-45.

DOI: 10.1016/j.cep.2016.08.002

Google Scholar

[17] S. Masoumi, M.R. Rahimpour, M. Mehdipour, Removal of carbon dioxide by aqueous amino acid salts using hollow fiber membrane contactors. J. CO2 Util. 16 (2016) 42-49.

DOI: 10.1016/j.jcou.2016.05.008

Google Scholar

[18] Z. Zhang, Comparisons of various absorbent effects on carbon dioxide capture in membrane gas absorption (MGA) process. J. Nat. Gas. Sci. Eng. 31 (2016) 589-595.

DOI: 10.1016/j.jngse.2016.03.052

Google Scholar

[19] D.A. Zaidiza, S.G. Wilson, B. Belaissaoui, S. Rode, C. Castel, D. Roizard, E. Favre, Rigorous modelling of adiabatic multicomponent CO2 post-combustion capture using hollow fibre membrane contactors. Chem. Eng. Sci. 145 (2016) 45-58.

DOI: 10.1016/j.ces.2016.01.053

Google Scholar

[20] D.A. Zaidiza, B. Belaissaoui, S. Rode, T. Neveux, C. Makhloufi, C. Castel, D. Roizard, E. Favre, Adiabatic modelling of CO2 capture by amine solvents using membrane contactors. J. Memb. Sci. 493 (2015) 106-119.

DOI: 10.1016/j.memsci.2015.06.015

Google Scholar

[21] D.A. Zaidiza, J. Billaud, B. Belaissaoui, S. Rode, D. Roizard, E. Favre, Modeling of CO2 post-combustion capture using membrane contactors, comparison between one- and two-dimensional approaches. J. Memb. Sci. 455 (2014) 64-74.

DOI: 10.1016/j.memsci.2013.12.012

Google Scholar

[22] E. Chabanon, D. Roizard, E. Favre, Modeling strategies of membrane contactors for post-combustion carbon capture: A critical comparative study. Chem. Eng. Sci. 87 (2013) 393-407.

DOI: 10.1016/j.ces.2012.09.011

Google Scholar

[23] W. Rongwong, S. Assabumrungrat, R. Jiraratananon, Rate based modeling for CO2 absorption using monoethanolamine solution in a hollow fiber membrane contactor. J. Memb. Sci. 429 (2013) 396-408.

DOI: 10.1016/j.memsci.2012.11.050

Google Scholar

[24] S. Boributh, S. Assabumrungrat, N. Laosiripojana, R. Jiraratananon, A modeling study on the effects of membrane characteristics and operating parameters on physical absorption of CO2 by hollow fiber membrane contactor. J. Memb. Sci. 380 (2011) 21-33.

DOI: 10.1016/j.memsci.2011.06.029

Google Scholar

[25] P. Keshavarz, J. Fathikalajahi, S. Ayatollahi, Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. J. Hazard. Mater. 152 (2008) 1237-1247.

DOI: 10.1016/j.jhazmat.2007.07.115

Google Scholar

[26] H. Zhang, R. Wang, D.T. Liang, J.H. Tay, Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. J. Memb. Sci. 279 (2006) 301-310.

DOI: 10.1016/j.memsci.2005.12.017

Google Scholar

[27] R.A. Amaral, A.C. Habert, C.P. Borges, Performance evaluation of composite and microporous gas-liquid membrane contactors for CO2 removal from a gas mixture. Chem. Eng. & Proc.: Proc. Intensif. 102 (2016) 202-209.

DOI: 10.1016/j.cep.2016.01.018

Google Scholar

[28] J. Gervasi, L. Dubois, D. Thomas, Simulation of the post-combustion CO2 capture with Aspen HysysTM software: study of different configurations of an absorption-regeneration process for the application to cement flue gases. Energy Procedia 63 (2014) 1018-1028.

DOI: 10.1016/j.egypro.2014.11.109

Google Scholar

[29] P.T. Nguyen, E. Lasseuguette, Y. Medina-Gonzalez, J.C. Remigy, D. Roizard, E. Favre, A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture. J. Memb. Sci. 377 (2011) 261-272.

DOI: 10.1016/j.memsci.2011.05.003

Google Scholar

[30] D.Q. Kern, Process Heat Transfer, McGraw-Hill Book, New York, (1950).

Google Scholar