The Poly-Substituted M-Type Hexaferrite Crystals Growth

Article Preview

Abstract:

In the presented article the possibility analysis of highly entropic oxide phases composition and structure formation was performed. Moreover, the studies devoted to the production of substituted single crystals with the M-type hexa-ferrite structure were carried out. The experiments were conducted to studying the possibility of obtaining oxide high-entropy crystalline solid solutions with the M-type hexa-ferrites structure. As the result of the crystallized samples investigation, the microcrystalline highly entropic Ba (Fe,Mn,Ni,Ti,Al)12O19 and (Ba,Pb,Sr)(Fe,Mn,Ti,Ni,Al)12O19 phases appearing was detected. Based on the obtained data, it is possible to consider that the poly-substituted crystals growth with M-type hexa-ferrite structure. The structural stabilization is promoted by high values of the configurational entropy of the crystal matrix components mixing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-191

Citation:

Online since:

February 2019

Export:

Price:

* - Corresponding Author

[1] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys. Fundamentals and Applications, Springer International Publishing: Cham, Switzerland, (2016).

Google Scholar

[2] A.D. Pogrebnyak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev, The structure and properties of high-entropy alloys and nitride coatings based on them, Russian Chemical Reviews. 83(11) (2014) 1027-1061.

DOI: 10.1070/rcr4407

Google Scholar

[3] L. Jiang, Y.P. Lu, H. Jiang, T.M. Wang, B.N. Wei, Z.Q. Cao & T.J. Li, Formation rules of single phase solid solution in high entropy alloys, Materials Science and Technology, 32(6)(2016)588-592.

DOI: 10.1179/1743284715y.0000000130

Google Scholar

[4] W. J. Shen, M. H. Tsai, K. Y. Tsai, C. C. Juan, C. W. Tsai, J. W. Yeh, Y. S. Chang, Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride, Journal of The Electrochemical Society, 160(11) (2013) 531-535.

DOI: 10.1149/2.028311jes

Google Scholar

[5] B. Ren, Z. Shen, Z. Liu, Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering, J. Alloys Compd., 560 (2013) 171-176.

DOI: 10.1016/j.jallcom.2013.01.148

Google Scholar

[6] W. Sheng, X. Yang, C. Wang , Y. Zhang. Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering, Entropy, 18 (2016) 226-226.

DOI: 10.3390/e18060226

Google Scholar

[7] K. Yalamanchili, F. Wang, I.C. Schramm, J.M. Andersson, M.P.J. Jöesaar, F. Tasnádi, F. Mücklich, N. Ghafoor, M. Odén, Exploring the high entropy alloy concept in (AlTiVNbCr)N, Thin Solid Films, 636 (2017) 346-352.

DOI: 10.1016/j.tsf.2017.06.029

Google Scholar

[8] J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics, Scientific Reports, 6 (2016).

DOI: 10.1038/srep37946

Google Scholar

[9] M.-I. Lin, M.-H..Tsai, W.-J. Shen, J.-W. Yeh. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films, Thin Solid Films, 518 (2010) 2732-2737.

DOI: 10.1016/j.tsf.2009.10.142

Google Scholar

[10] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides, Nature Communications, 6 (2015) 84-85.

DOI: 10.1038/ncomms9485

Google Scholar

[11] D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides, Rapid Research Letters, 10(4) (2016) 328-333.

DOI: 10.1002/pssr.201600043

Google Scholar

[12] A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, S.S. Bhattacharya, Nanocrystalline multicomponent entropy stabilised transition metal oxides, Journal of the European Ceramic Society, 37(2) (2017) 747-754.

DOI: 10.1016/j.jeurceramsoc.2016.09.018

Google Scholar

[13] D. Berardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides, Journal of Materials Chemistry A, 4 (2016) 9536-9541.

DOI: 10.1039/c6ta03249d

Google Scholar

[14] Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, D.W. Brenner, Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations, Journal of Applied Physics, 120(9) (2016).

DOI: 10.1063/1.4962135

Google Scholar

[15] C.M. Rost, Z. Rak, D.W. Brenner, J.-P. Maria, Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study, Journal of the American Ceramic Society, 100(6) (2017) 2732-2738.

DOI: 10.1111/jace.14756

Google Scholar

[16] D. Berardan, A.K. Meena, S. Franger, C. Herrero, N. Dragoe, Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides, Journal of Alloys and Compounds, 704 (2017) 693-700.

DOI: 10.1016/j.jallcom.2017.02.070

Google Scholar

[17] A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R.R. Djenadic, Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium Multivalency, Dalton Trans., 36 (2017) 12167-12176.

DOI: 10.1039/c7dt02077e

Google Scholar

[18] R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravadhanula, Ch. Kübel, S.S. Bhattacharya, A.S. Gandhi, H. Hahn, Multicomponent equiatomic rare earth oxides, Materials Research Letters, 5 (2017) 102-109.

DOI: 10.1080/21663831.2016.1220433

Google Scholar

[19] Z. Lei, X. Liu, R. Li, H. Wang, Y. Wu, Zh. Lu, Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering, Scripta Materialia, 146 (2018) 340-343.

DOI: 10.1016/j.scriptamat.2017.12.025

Google Scholar

[20] J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure, Materials Letters, 216 (2018) 32-36.

DOI: 10.1016/j.matlet.2017.12.148

Google Scholar

[21] Ch.-H. Tsau, Zh.-Y. Hwang, S.-K. Chen, The microstructures and electrical resistivity of (Al,Cr,Ti)FeCoNiOx high-entropy alloy oxide thin films, Advances in Materials Science and Engineering, 6 (2015).

DOI: 10.1155/2015/353140

Google Scholar

[22] S. Jiang, T. Hu , J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A new class of high-entropy perovskite oxides, Scripta Materialia, 142 (2018) 116-120.

DOI: 10.1016/j.scriptamat.2017.08.040

Google Scholar

[23] A. Sarkar, R. Djenadic, D.Wang, Ch. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare earth and transition metal based entropy stabilized perovskite type oxides, Journal of the European Ceramic Societ, 38(5) (2018) 2318-2327.

DOI: 10.1016/j.jeurceramsoc.2017.12.058

Google Scholar

[24] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, N.S. Perov, A.S. Semisalova, I.V. Krivtsov, L.I. Isaenko, G.G. Mikhailov, R. Niewa, Ti-substituted BaFe12O19 single crystal growth and characterization, Crystal Growth and Design, 14(11) (2014) 5834-5839.

DOI: 10.1021/cg501075c

Google Scholar

[25] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, M. Bischoff, N.S. Perov, A.S. Semisalova, I.V. Krivtsov, L.I. Isayenko, G.G. Mikhailov, R. Niewa, Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals, 615 (2015) 1043-1046.

DOI: 10.1016/j.jallcom.2014.07.126

Google Scholar

[26] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.S. Semisalova, D.M. Galimov, L.I. Isaenko, R. Niewa, Growth, structural and magnetic characterization of Co- and Ni-substituted barium hexaferrite single crystals, 628 (2015) 480-484.

DOI: 10.1016/j.jallcom.2014.12.124

Google Scholar

[27] D.A. Vinnik, A.B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals, 41 (10) (2015) 12728-12733.

DOI: 10.1016/j.ceramint.2015.06.105

Google Scholar

[28] S. Nemrava, D.A. Vinnik, Z. Hu, M.Valldor, C.-Y. Kuo, D.A. Zherebtsov, S.A. Gudkova, C.-T. Chen, L.H. Tjeng, R. Niewa, Three oxidation states of manganese in the barium hexaferrite BaFe12-xMnxO19, Inorganic Materials, 56 (2017) 3861-3866.

DOI: 10.1021/acs.inorgchem.6b02688

Google Scholar

[29] D.A. Vinnik, I.A. Ustinova, A.B. Ustinov, S.A. Gudkova, D.A. Zherebtsov, E.A. Trofimov, N.S. Zabeivorota, G.G. Mikhailov, R. Niewa, Millimeter-wave characterization of aluminum substituted barium lead hexaferrite single crystals grown from PbO-B2O3 flux, Ceramics International, 17 (2017) 15800-15804.

DOI: 10.1016/j.ceramint.2017.08.145

Google Scholar

[30] D.A. Vinnik, D.S. Klygach, V.E. Zhivulin, A.I. Malkin, M.G. Vakhitov, S.A. Gudkova, D.M. Galimov, D.A. Zherebtsov, E.A. Trofimov, N.S. Knyazev, V.V. Atuchin, S.V. Trukhanov, A.V. Trukhanov, Electromagnetic properties of BaFe12O19:Ti at centimeter wavelengths, Journal of Alloys and Compounds, 755 (2018) 177-183.

DOI: 10.1016/j.jallcom.2018.04.315

Google Scholar

[31] S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, Magnetic and dipole moments in indium doped barium hexaferrites, Journal of Magnetism and Magnetic Materials, 457 (2018) 83-96.

DOI: 10.1016/j.jmmm.2018.02.078

Google Scholar