Consolidation of Magnesium and Magnesium Alloy Machine Chips Using High-Pressure Torsion

Article Preview

Abstract:

The high-pressure torsion processing technique was used to consolidate and process magnesium-based chips. Chips were prepared by machining commercially pure magnesium and a magnesium alloy AZ91 separately. Optical microscopy and microhardness measurements showed good consolidation of pure magnesium. The magnesium alloy continued to exhibit the boundaries between the chips even after 5 turns of HPT suggesting poor bonding. The results show that soft chips are easier to consolidate through HPT than harder alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

851-856

Citation:

Online since:

December 2018

Export:

Price:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103-187.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[2] R.X. Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures, Scripta Materialia 131 (2017) 1-5.

DOI: 10.1016/j.scriptamat.2016.12.024

Google Scholar

[3] E.A. Lukyanova, N.S. Martynenko, I. Shakhoya, A.N. Belyakov, L.L. Rokhlin, S.V. Dobatkin, Y.Z. Estrin, Strengthening of age-hardenable WE43 magnesium alloy processed by high pressure torsion, Materials Letters 170 (2016) 5-9.

DOI: 10.1016/j.matlet.2016.01.106

Google Scholar

[4] L. Balogh, R.B. Figueiredo, T. Ungár, T.G. Langdon, The contributions of grain size, dislocation density and twinning to the strength of a magnesium alloy processed by ECAP, Materials Science and Engineering A 528(1) (2010) 533-538.

DOI: 10.1016/j.msea.2010.09.048

Google Scholar

[5] T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi, Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure, Scripta Materialia 45 (2001) 89-94.

DOI: 10.1016/s1359-6462(01)00996-4

Google Scholar

[6] R.B. Figueiredo, F.S.J. Poggiali, C.L.P. Silva, P.R. Cetlin, T.G. Langdon, The influence of grain size and strain rate on the mechanical behavior of pure magnesium, Journal of Materials Science 51(6) (2016) 3013-3024.

DOI: 10.1007/s10853-015-9612-x

Google Scholar

[7] R.B. Figueiredo, S. Sabbaghianrad, A. Giwa, J.R. Greer, T.G. Langdon, Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation, Acta Materialia 122 (2017) 322-331.

DOI: 10.1016/j.actamat.2016.09.054

Google Scholar

[8] R.B. Figueiredo, T.G. Langdon, Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing, Scripta Materialia 61(1) (2009) 84-87.

DOI: 10.1016/j.scriptamat.2009.03.012

Google Scholar

[9] R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP, Journal of Materials Science 43(23-24) (2008) 7366-7371.

DOI: 10.1007/s10853-008-2846-0

Google Scholar

[10] R.B. Figueiredo, T.G. Langdon, Record Superplastic Ductility in a Magnesium Alloy Processed by Equal-Channel Angular Pressing, Advanced Engineering Materials 10 (2008) 37-40.

DOI: 10.1002/adem.200700315

Google Scholar

[11] R.B. Figueiredo, T.G. Langdon, The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processed by ECAP, Materials Science and Engineering A 430(1-2) (2006) 151-156.

DOI: 10.1016/j.msea.2006.05.056

Google Scholar

[12] C.L.P. Silva, A.C. Oliveira, C.G.F. Costa, R.B. Figueiredo, M. de Fátima Leite, M.M. Pereira, V.F.C. Lins, T.G. Langdon, Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium, Journal of Materials Science 52(10) (2017) 5992-6003.

DOI: 10.1007/s10853-017-0835-x

Google Scholar

[13] C.Z. Zhang, S.K. Guan, L.G. Wang, S.J. Zhu, L. Chang, The microstructure and corrosion resistance of biological Mg-Zn-Ca alloy processed by high-pressure torsion and subsequently annealing, Journal of Materials Research 32(6) (2017) 1061-1072.

DOI: 10.1557/jmr.2017.55

Google Scholar

[14] J.H. Gao, S.K. Guan, Z.W. Ren, Y.F. Sun, S.J. Zhu, B. Wang, Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid, Materials Letters 65(4) (2011) 691-693.

DOI: 10.1016/j.matlet.2010.11.015

Google Scholar

[15] K. Xia, X. Wu, Back pressure equal channel angular consolidation of pure Al particles, Scripta Materialia 53(11) (2005) 1225-1229.

DOI: 10.1016/j.scriptamat.2005.08.012

Google Scholar

[16] M. Haouaoui, I. Karaman, H.J. Maier, K.T. Hartwig, Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal-channel angular extrusion, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 35A(9) (2004) 2935-2949.

DOI: 10.1007/s11661-004-0241-2

Google Scholar

[17] H.C. Lee, C.G. Chao, T.F. Liu, C.Y. Lin, H.C. Wang, Effect of Temperature and Extrusion Pass on the Consolidation of Magnesium Powders Using Equal Channel Angular Extrusion, Materials Transactions 54(5) (2013) 765-768.

DOI: 10.2320/matertrans.m2013006

Google Scholar

[18] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing toold for grain refinement, Progress in Materials Science 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[19] W. Xu, X. Wu, T. Honma, S.P. Ringer, K. Xia, Nanostructured Al–Al2O3 composite formed in situ during consolidation of ultrafine Al particles by back pressure equal channel angular pressing, Acta Materialia 57(14) (2009) 4321-4330.

DOI: 10.1016/j.actamat.2009.06.010

Google Scholar

[20] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications Progress in Materials Science 53(6) (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[21] A.P. Zhilyaev, A.A. Gimazov, G.I. Raab, T.G. Langdon, Using high-pressure torsion for the cold-consolidation of copper chips produced by machining, Materials Science and Engineering: A 486(1) (2008) 123-126.

DOI: 10.1016/j.msea.2007.08.070

Google Scholar

[22] A.P. Zhilyaev, G. Ringot, Y. Huang, J. Maria Cabrera, T.G. Langdon, Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion, Materials Science and Engineering: A 688 (2017) 498-504.

DOI: 10.1016/j.msea.2017.02.032

Google Scholar

[23] M. Khajouei-Nezhad, M.H. Paydar, R. Ebrahimi, P. Jenei, P. Nagy, J. Gubicza, Microstructure and mechanical properties of ultrafine-grained aluminum consolidated by high-pressure torsion, Materials Science and Engineering: A 682 (2017) 501-508.

DOI: 10.1016/j.msea.2016.11.076

Google Scholar

[24] P. Li, Q. Lin, X. Wang, Y. Tian, K.-M. Xue, Recrystallization behavior of pure molybdenum powder processed by high-pressure torsion, International Journal of Refractory Metals and Hard Materials 72 (2018) 367-372.

DOI: 10.1016/j.ijrmhm.2018.01.002

Google Scholar

[25] P. Li, X. Wang, K.-M. Xue, Y. Tian, Y.-C. Wu, Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion, International Journal of Refractory Metals and Hard Materials 54 (2016) 439-444.

DOI: 10.1016/j.ijrmhm.2015.10.004

Google Scholar

[26] T. Tokunaga, K. Kaneko, Z. Horita, Production of aluminum-matrix carbon nanotube composite using high pressure torsion, Materials Science and Engineering: A 490(1) (2008) 300-304.

DOI: 10.1016/j.msea.2008.02.022

Google Scholar

[27] J.M. Cubero-Sesin, Z. Horita, Powder consolidation of Al–10wt% Fe alloy by High-Pressure Torsion, Materials Science and Engineering: A 558 (2012) 462-471.

DOI: 10.1016/j.msea.2012.08.029

Google Scholar

[28] J.K. Han, H.J. Lee, J.I. Jang, M. Kawasaki, T.G. Langdon, Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion, Materials Science and Engineering: A 684 (2017) 318-327.

DOI: 10.1016/j.msea.2016.12.067

Google Scholar

[29] M. Kawasaki, B. Ahn, H. Lee, A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion to process an aluminum-magnesium nanocomposite through diffusion bonding, Journal of Materials Research 31(1) (2016) 88-99.

DOI: 10.1557/jmr.2015.257

Google Scholar

[30] S. Panda, J.-J. Fundenberger, Y. Zhao, J. Zou, L.S. Toth, T. Grosdidier, Effect of initial powder type on the hydrogen storage properties of high-pressure torsion consolidated Mg, International Journal of Hydrogen Energy 42(35) (2017) 22438-22448.

DOI: 10.1016/j.ijhydene.2017.05.097

Google Scholar

[31] T. Grosdidier, J.J. Fundenberger, J.X. Zou, Y.C. Pan, X.Q. Zeng, Nanostructured Mg based hydrogen storage bulk materials prepared by high pressure torsion consolidation of arc plasma evaporated ultrafine powders, International Journal of Hydrogen Energy 40(47) (2015) 16985-16991.

DOI: 10.1016/j.ijhydene.2015.06.159

Google Scholar

[32] M.I. Abd El Aal, E. Yoo Yoon, H. Seop Kim, Recycling of AlSi8Cu3 alloy chips via high pressure torsion, Materials Science and Engineering: A 560 (2013) 121-128.

DOI: 10.1016/j.msea.2012.09.045

Google Scholar

[33] K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scripta Materialia 64(9) (2011) 880-883.

DOI: 10.1016/j.scriptamat.2011.01.023

Google Scholar

[34] X.G. Qiao, Y.W. Zhao, W.M. Gan, Y. Chen, M.Y. Zheng, K. Wu, N. Gao, M.J. Starink, Hardening mechanism of commercially pure Mg processed by high pressure torsion at room temperature, Materials Science and Engineering: A 619 (2014) 95-106.

DOI: 10.1016/j.msea.2014.09.068

Google Scholar