Power-Efficient Phase Change Memory Using Silicon Carbide as a Buffer Layer

Article Preview

Abstract:

Power consumption has long been a great obstacle in phase change memory technology. Silicon carbide was introduced to be a buffer layer between the phase change material and the metal electrode in this work. The results showed that the new structure mitigated the energy consumption and maintained the advantage of high speed. This is attributed to the thin SiC buffer layer that helps confine the generated Joule heat inside the active phase change volume and form more conducting paths by the high efficiency of the heat utilization. Additionally, another key role — inhibition of the material separation, is conducive to achieving stable and sustainable electrical operations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1812-1816

Citation:

Online since:

June 2017

Export:

Price:

* - Corresponding Author

[1] S. Raoux, F. Xiong, M. Wuttig, E. Pop, MRS Bull. 39 (2014) 703–710.

DOI: 10.1557/mrs.2014.139

Google Scholar

[2] H. -S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Proc. IEEE 98 (2010) 2201–2227.

DOI: 10.1109/jproc.2010.2070050

Google Scholar

[3] M. Wuttig, S. Raoux, Zeitschrift Für Anorg. Und Allg. Chemie 638 (2012) 2455–2465.

DOI: 10.1002/zaac.201200448

Google Scholar

[4] T. Guo, S. Song, L. Li, L. Shen, B. Wang, B. Liu, Z. Song, M. Qi, S. Feng, Mater. Lett. 169 (2016) 203–206.

Google Scholar

[5] G.F. Zhou, B. a J. Jacobs, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 38 (1999) 1625–1628.

Google Scholar

[6] C. Ahn, S.W. Fong, Y. Kim, S. Lee, A. Sood, C.M. Neumann, M. Asheghi, K.E. Goodson, E. Pop, H. -S.P. Wong, Nano Lett. 15 (2015) 6809–6814.

DOI: 10.1021/acs.nanolett.5b02661

Google Scholar

[7] K.E.G. Elah Bozorg-Grayeli, John P. Reifenberg, Mehdi Asheghi, H. -S. PhilipWong, Annu. Rev. Heat Transf. 16 (2013) 397–428.

Google Scholar

[8] M.S. Aziz, Y. Yin, S. Hosaka, Z. Mohammed, R.I. Alip, IOP Conf. Ser. Mater. Sci. Eng. 99 (2015) 012003.

DOI: 10.1088/1757-899x/99/1/012003

Google Scholar

[9] C. Kim, D. -S. Suh, K.H.P. Kim, Y. -S. Kang, T. -Y. Lee, Y. Khang, D.G. Cahill, Appl. Phys. Lett. 92 (2008) 013109.

DOI: 10.1063/1.2830002

Google Scholar

[10] S. Song, Z. Song, C. Peng, L. Gao, Y. Gu, Z. Zhang, Y. Lv, D. Yao, L. Wu, B. Liu, Nanoscale Res. Lett. 8 (2013) 77.

Google Scholar

[11] M. Zhu, L. Wu, F. Rao, Z. Song, K. Ren, X. Ji, S. Song, D. Yao, S. Feng, Appl. Phys. Lett. 104 (2014) 053119.

Google Scholar

[12] S. Raoux, D. Ielmini, Chem. Rev. 110 (2010) 240–267.

Google Scholar

[13] J. -B. Park, G. -S. Park, H. -S. Baik, J. -H. Lee, H. Jeong, K. Kim, J. Electrochem. Soc. 154 (2007) H139.

Google Scholar

[14] S.W. Nam, D. Lee, M.H. Kwon, D.M. Kang, C. Kim, T.Y. Lee, S. Heo, Y.W. Park, K. Lim, H.S. Lee, J.S. Wi, K.W. Yi, Y. Khang, K.B. Kim, Electrochem. Solid State Lett. 12 (2009) H155–H159.

DOI: 10.1149/1.3079480

Google Scholar

[15] M. Zhu, L. Wu, F. Rao, Z. Song, M. Xia, X. Ji, S. Lv, S. Feng, Appl. Phys. Lett. 104 (2014) 063105.

Google Scholar