On Electrons Mobility in Heavily Nitrogen Doped 4H-SiC

Article Preview

Abstract:

Low field electron mobility in heavily nitrogen doped 4H-SiC epitaxial layers as well as in the regions formed by ion implantation was extracted from Hall and van der Pauw measurements. The measurements were done at room temperature in 4H-SiC samples with carrier concentrations ranged from 2.8×1018 to 2.3×1019 cm-3. Fitting parameters in empirical expression given by Caughey and Thomas for room temperature low field electron mobility depending on carrier concentration in 4H-SiC were extracted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-257

Citation:

Online since:

May 2017

Export:

Price:

* - Corresponding Author

[1] W. Götz, A. Schöner, G. Pensl, W. Suttrop, W. J. Choyke, R. Stein, S. Leibenzeder, Journal of Applied Physics 73 (1993) 3332-3338.

DOI: 10.1063/1.352983

Google Scholar

[2] W. J. Schaffer, H. S. Kong, G. H. Negley, J. Palmour, Inst. Phys. Conf. Ser. 137 (1994) 155-159.

Google Scholar

[3] W. J. Schaffer, G. H. Negley, K. G. Irvine, J. W. Palmour, Mat. Res. Soc. Symp, 339 (1994) 595–600.

Google Scholar

[4] T. Kinoshita, K. M. Itoh, J. Muto, M. Schadt, G. Pensl, K. Takeda, Mater. Sci. Forum 264-268 (1998) 295-298.

DOI: 10.4028/www.scientific.net/msf.264-268.295

Google Scholar

[5] A. A. Burk Jr, M. J. O'Loughlin, R. R. Siergiej, A. K. Agarwal, S. Sriram, R. C. Clarke, M. F. MacMillan, V. Balakrishna, C. D. Brandt, Solid-State Electronics 43 (1999) 1459-1464.

DOI: 10.1016/s0038-1101(99)00089-1

Google Scholar

[6] J. Pernot, S. Contreras, J. Camassel, J. L. Robert, W. Zawadzki, E. Neyret and L. Di Cioccio, Applied Physics Letters 77 (2000) 4359-4361.

DOI: 10.1063/1.1332102

Google Scholar

[7] H. Matsunami and T. Kimoto, Materials Science and Engineering: R: Reports 20 (1997) 125-166.

Google Scholar

[8] A. Schöner, S. Karlsson, T. Schmitt, N. Nordell, M. Linnarsson and K. Rottner, Materials Science and Engineering: B 61–62 (1999) 389-394.

DOI: 10.1016/s0921-5107(98)00540-6

Google Scholar

[9] T. Hatakeyama, T. Watanabe, M. Kushibe, K. Kojima, S. Imai, T. Suzuki, T. Shinohe, T. Tanaka and K. Arai, Material Science Forum 433-436 (2003) 443.

DOI: 10.4028/www.scientific.net/msf.433-436.443

Google Scholar

[10] S. Nakashima and H. Harima, Inst. Phys. Conf. Ser. 142 (1996) 269-274.

Google Scholar

[11] S. Kagamihara, H. Matsuura, T. Hatakeyama, T. Watanabe, M. Kushibe, T. Shinohe and K. Arai, Journal of Applied Physics 96 (2004) 5601-5606.

DOI: 10.1063/1.1798399

Google Scholar

[12] M. Schadt, G. Pensl, R. Devaty, W.J. Choyke, R. Stein, D. Stephani, Appl. Phys. Lett. 65 (1994) 3120.

DOI: 10.1063/1.112455

Google Scholar

[13] K. Vassilevski, N. G. Wright, I. P. Nikitina, A. B. Horsfall, A. G. O'Neill, M. J. Uren, K. P. Hilton, A. G. Masterton, A. J. Hydes and C. M. Johnson, Semiconductor Science and Technology 20 (2005) 271.

DOI: 10.1088/0268-1242/20/3/003

Google Scholar

[14] I. Nikitina, K. Vassilevski, N. Wright, A.B. Horsfall, A. O'Neill and C. Johnson, J. of Appl. Phys. 97 (2005) 083709.

Google Scholar

[15] G. Rutsch, R. P. Devaty, W. J. Choyke, D. W. Langer, L. B. Rowland, J. of Appl. Phys. 84 (1998) (2062).

Google Scholar

[16] M. Roschke and F. Schwierz, IEEE Transactions on Electron Devices, 48 (2001) 1442.

Google Scholar

[17] D. M. Caughey and R. E. Thomas, Proceedings of the IEEE 55 (1967) 2192-2193.

Google Scholar

[18] M. G. Spencer, J. Palmour and C. Carter, IEEE Transactions on Electron Devices 49 (2002) 940-945.

DOI: 10.1109/16.998608

Google Scholar