Semiconductor Nanocrystals for Photovoltaic Devices

Article Preview

Abstract:

Recently, photovoltaic devices based on colloidal semiconductor nanocrystals (NCs) have attracted a great interest due to their flexible synthesis with tunable band gaps and shape-dependent optical and electronic properties. However, the surface of NCs typically presents long chain with electrically insulating organic ligands, which hinder the device applications for NCs. So the major challenge of NCs for photovoltaic devices application is to decrease the inter NC space and the height of the tunnel barriers among NCs, therefore increase the transport properties of NCs. In this article, recent development of colloidal semiconductor NCs and possible routes for improving transport properties of colloidal NCs were reviewed. Among those methods, the thermal annealing approach provides a simple and cost-effective way to fabricate superlattice and to decrease the inter-space among NCs, which may be used for the preparation of other nanocrystalline superstructure and functional devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

935-938

Citation:

Online since:

April 2016

Authors:

Export:

Price:

[1] S. Coe, W.K. Woo, M. Bawendi, V. Bulovic: Nature. 420(2002) 800-803.

Google Scholar

[2] J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.B. Murray: J. Amer. Chem. Soc. 128 ( 2006)3248.

Google Scholar

[3] A. J. Moule, L. Chang, C. Thambidurai, R. Vidu, P. Stroeve: J. Mater. Chem. 22(2012)2351.

Google Scholar

[4] S. E. Habas, H.A.S. Plat, M. F. A.M. Van Hest, and D.S. Ginley: Chem. Rev. 110(2010)6571.

Google Scholar

[5] M.D. McGehee: Mater. Res. Bull. 34(2009)95-100.

Google Scholar

[6] D. V. Talapin, J. S. Lee, M. V. Kovalenko, E. V. Shevchenko: Chem. Rev. 110(2009)389-458.

Google Scholar

[7] J. Xu, J. Wang, M. Mitchell, P. Mukherjee, M. Jeffries-EL, J. W. Petrich, Z. Q. Lin: J. Amer. Chem. Soc. 129(2007)12828.

Google Scholar

[8] C. B. Murray, C. R. Kagan, M. G. Bawendi: Annu. Rev. Mater. Sci. 30( 2003)545-610.

Google Scholar

[9] I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos: Science. 310(2005)462-465.

Google Scholar

[10] H. S. Al-Salman, M.J. Abdullah: J. Mater. Sci. Technol. 29(2013)1139-1145.

Google Scholar

[11] N. C. Greenham, X. G. Peng, A. P. Alivisatos: Phys. Rev. B. 54(1996)17628-17637.

Google Scholar

[12] I. S. Liu, H. H. Lo, C. T. Chien, Y. Y. Lin, C. W. Chen, Y. F. Chen, W. F. Su, S. C. Liou: J. Mater. Chem. 18(2008)675.

Google Scholar

[13] D. V. Talapin, and C. B. Murray: Science. 310(2005)86-89.

Google Scholar

[14] M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, A. J. Nozik: J. Amer. Chem. Soc. 130(2008)5974.

Google Scholar

[15] J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, A. J. Nozik: ACS Nano. 2(2008)271.

Google Scholar

[16] W. J. Kim, S. J. Kim, K. Lee, M. Samoc, A. N. Cartwright, P. N. Prasad: Nano. Lett. 8(2008)3262.

Google Scholar

[17] C. B Murray, D. J. Norris, and M. G. Bawendi: J. Amer. Chem. Soc. 115(1993)8706-8715.

Google Scholar

[18] V. J. Porter, S. Geyer, J. E. Halpert, M. A. Kastner, M. G. Bawendi: J. Phys. Chem. C. 112(2008)2308.

Google Scholar

[19] S. Deka, K. Miszta, D. Dorfs, A. Genovese, G. Bertoni, L. Manna: Nano. Lett. 10(2010) 3770-3776.

DOI: 10.1021/nl102539a

Google Scholar

[20] W. Qi, J. de Graaf, F. Qiao, S. Marras, L. Manna,  M. Dijkstra: Nano. Lett. 12(2012)5299-5303.

DOI: 10.1021/nl302620j

Google Scholar

[21] F. Qiao: Solid-State Electron. 82(2013)25-28.

Google Scholar

[22] F. Qiao, Y.C. Sang: J. Mater. Sci: Mater. Electron. 25(2014)2339-2343.

Google Scholar