Characterization of Proton Conducting Carboxymethyl Cellulose/Chitosan Dual-Blend Based Biopolymer Electrolytes

Article Preview

Abstract:

This article presents the discovery on biopolymer electrolytes comprising of ammonium nitrate, NH4NO3 with dual-blend biopolymer materials, carboxymethyl cellulose/chitosan which were prepared via solution-casting technique. The biopolymer blend based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the dual-blend biopolymer based complexes. X-Ray Diffraction result showed that all dual-blend samples were predominantly amorphous. Electrochemical impedance spectroscopy was conducted to obtain their ionic conductivities. The highest conductivity at ambient temperature of 1.03 × 105 S cm–1 was obtained for the electrolyte film containing 40 wt% of NH4NO3. These results indicated that the dual-blend biopolymer based electrolyte has potential for application of electrochemical devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

539-544

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] M.Z.A. Yahya, M.K. Harun, A.M.M. Ali, M.F. Mohammat, M.A.K.M. Hanafiah, S.C. Ibrahim, M. Mustaffa, Z.M. Darus, F. Latif, XRD and surface morphology studies on chitosan-based film electrolytes, J. Appl. Sci. 6 (2006) 3150-3154.

Google Scholar

[2] S. Chandra, A. Chandra, Solid State Ionics: Materials Aspect. Proceedings-National Academy of Sciences India Section. 64 (1994) 141-181.

Google Scholar

[3] S. Zhou, S. Fang, High ionic conductivity of all-solid polymer electrolytes based on polyorganophosphazenes. Eur. Polym. J. 43 (2007) 3695-3700.

DOI: 10.1016/j.eurpolymj.2007.06.001

Google Scholar

[4] S.M.D.S. Neiro, D.C. Dragunski, A.F. Rubira, E.C. Muniz, Miscibility of PVC/PEO blends by viscosimetric, microscopic and thermal analyses. Eur. Polym. J. 36 (2000)583-589.

DOI: 10.1016/s0014-3057(99)00082-8

Google Scholar

[5] S. Rudhziah, M.S.A. Rani, A. Ahmad, N.S. Mohamed, H. Kaddami, Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind. Crop. Prod. (2015). (doi: 10. 1016/j. indcrop. 2014. 12. 051).

DOI: 10.1016/j.indcrop.2014.12.051

Google Scholar

[6] R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177 (2006) 2679-2682.

DOI: 10.1016/j.ssi.2006.04.013

Google Scholar

[7] M. Sivakumar, R. Subadevi, S. Rajendran, H.C. Wu, N.L. Wu, Compositional effect of PVdF–PEMA blend gel polymer electrolytes for lithium polymer batteries. Eur. Polym. J. 43 (2007) 4466-4473.

DOI: 10.1016/j.eurpolymj.2007.08.001

Google Scholar

[8] H.S. Han, H.R. Kang, S.W. Kim, H.T. Kim, Phase-separated polymer electrolyte based on poly (vinyl chloride)/poly (ethyl methacrylate) blend. J. Power Sources 112 (2002) 461-468.

DOI: 10.1016/s0378-7753(02)00436-6

Google Scholar

[9] L. Fan, Z. Dang, C.W. Nan, M. Li, Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P (VDF-HFP) blends. Electrochim. Acta 48 (2002) 205-209.

DOI: 10.1016/s0013-4686(02)00603-5

Google Scholar

[10] S. Ramesh, T. Winie, A.K. Arof, Investigation of mechanical properties of polyvinyl chloride–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. Eur. Polym. J. 43 (2007) 1963-(1968).

DOI: 10.1016/j.eurpolymj.2007.02.006

Google Scholar

[11] H. Huang, P. He, N. Hu, Y. Zeng, Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films. Bioelectrochemistry 61 (2003) 29-38.

DOI: 10.1016/s1567-5394(03)00057-4

Google Scholar

[12] M.P. Adinugraha, D.W. Marseno, Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohyd. Polym. 62 (2005) 164-169.

DOI: 10.1016/j.carbpol.2005.07.019

Google Scholar

[13] M.S.A. Rani, S. Rudhziah, A. Ahmad, N.S. Mohamed, Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber. Polymers, 6(2014), 2371-2385.

DOI: 10.3390/polym6092371

Google Scholar

[14] D.R. Biswal., R.P. Singh, Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohyd. Polym. 57 (2004) 379-387.

DOI: 10.1016/j.carbpol.2004.04.020

Google Scholar

[15] S.S. Alias, S.M. Chee, A.A. Mohamad, Chitosan–ammonium acetate–ethylene carbonate membrane for proton batteries. Arab J. Chem. In Press Accepted Manuscript (2014). (doi: 10. 1016/j. arabjc. 2014. 05. 001).

DOI: 10.1016/j.arabjc.2014.05.001

Google Scholar

[16] P.G. Seferian, M.L. Martinez, Immune stimulating activity of two new chitosan containing adjuvant formulations. Vaccine 19 (2000) 661-668.

DOI: 10.1016/s0264-410x(00)00248-6

Google Scholar

[17] M. Rinaudo, G. Pavlov, J. Desbrieres, Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40 (1999) 7029-7032.

DOI: 10.1016/s0032-3861(99)00056-7

Google Scholar

[18] A.S. Samsudin, E.C.H. Kuan, M.I.N. Isa, Investigation on the potential of proton conducting biopolymer electrolytes based methyl cellulose-glycolic acid. Int. J. Phys. Sci. 16 (2011) 477-485.

DOI: 10.1080/1023666x.2011.600810

Google Scholar

[19] A.S. Samsudin, W.M. Khairul, M.I.N. Isa, Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J. Non-Cryst. Solids 358 (2012) 1104-1112.

DOI: 10.1016/j.jnoncrysol.2012.02.004

Google Scholar

[20] S. Rudhziah, N.S. Mohamed, Characterization of Proton Conducting PVDF-HFP/PEMA Blend Based Solid Electrolytes. Solid State Science and Technology 17 (2009) 73-80.

Google Scholar

[21] M.S.A. Rani, N.A. Dzulkurnain, A. Ahmad, N.S. Mohamed, Conductivity and Dielectric Behavior Studies of Carboxymethyl Cellulose from Kenaf Bast Fiber Incorporated with Ammonium Acetate-BMATFSI Biopolymer Electrolytes. Int. J. Polym. Anal. Ch. 20 (2015).

DOI: 10.1080/1023666x.2015.1013176

Google Scholar

[22] L.S. Ng, A.A. Mohamad, Protonic battery based on a plasticized chitosan-NH4NO3 solid polymer electrolyte. J. Power Sources 163 (2006) 382-385.

DOI: 10.1016/j.jpowsour.2006.09.042

Google Scholar

[23] M.L.H. Rozali, A.S. Samsudin, M.I.N. Isa, Ion conducting mechanism of carboxy methylcellulose doped with ionic dopant salicylic acid based solid polymer electrolytes. Int. J. App. Sci. Tech. 2 (2012) 113-121.

Google Scholar