Optical Properties of Nd Doped Lead Borotellurite Glass

Article Preview

Abstract:

Many trivalent rare earth ions such as Er3+, Tm3+, Ho3+, Pr3+ and Nd3+ were doped as absorption and emission centers in glass hosts. In this work, lead borotellurite (PBT) glass doped with neodymium ion (Nd3+) has been prepared and characterized by mean of their optical properties. The UV-Vis measurement has been carried out in order to determine the optical band gap energy, reflective indices and the polarizability. Optical absorption spectra of the glass samples are recorded in the range 400–900 nm at room temperature From the result, there are six significant absorption peaks that corresponds to 525 nm, 584 nm, 683 nm, 747 nm, 805 nm and 878 nm wavelength have been observed with the most predominant peak to be used as excitation wavelength is found centered at 584 nm. The energy band gaps as well as the refractive indices were found to vary from 2.50eV to 2.59eV and from 1.89 to 1.96 with mol% of Nd content respectively. Meanwhile, the polarizability shows a similar trend of results to refractive indices as it varies from 5.56 x 10-24 cm3 to 5.63 x 10-24 cm3. These results will be discussed further in details.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-198

Citation:

Online since:

March 2016

Export:

Price:

[1] S.K. Goshal, M.R. Sahar, M.R. Dousti, R. Ariffin, M.S. Rohani, K. Hamzah (2012), Adv. Mat. Research, Vol. 501, pp.61-65.

Google Scholar

[2] K. Azman , W.A.W. Razali, H. Azhan, M.R. Sahar, (2012), Adv. Mat. Research, Vol. 501, pp.121-125.

Google Scholar

[3] M.R. Sahar, N.M. Yusoff, S.K. Ghosal, M.S. Rohani, K. Hamzah, R. Arifin, (2012) Adv. Mat. Research, Vol 501, pp.111-115.

DOI: 10.4028/www.scientific.net/amr.501.111

Google Scholar

[4] J.D.S. Guerra, C.R. Hathenher, S.A. Lourenco, N.O. Dantes, (2010), J. Non-Cryst. Solids, 356, pp.2350-2354.

Google Scholar

[5] I. Pal, A. Agarwal, S. Sanghi, M.P. Aggarwal (2012), Opt. Mat., 34, pp.1171-1180.

Google Scholar

[6] K. Selvaraju, K. Marimuthu, (2012), J. Luminescence, 132, pp.1171-1178.

Google Scholar

[7] H. Nii, K. Ozaki, M. Herren, M. Morita, (1998), J. Luminescence, 116, pp.76-77.

Google Scholar

[8] A. Mori, Y. Ohishi, S. Sudo (1997), Electronics Letters, 33, p.863.

Google Scholar

[9] M.V. Vijaya Kumar, B.C. Jamalaiah, K. Ramagopal, R.R. Reddy (2012), J. Luminescence, 132 pp.86-90.

Google Scholar

[10] S. L. S. Rao, G. Ramadevudu, A. Hameed, (2012), Int. J. Eng. Sci. Technol. 4(4), p.25–35.

Google Scholar

[11] W. Widanarto, M. R. Sahar, S. K. Ghoshal, R. Arifin, M. S. Rohani, K. Hamzah, M. Jandra, (2013), Mater. Chem. Phys. 138(1), p.174–178.

DOI: 10.1016/j.matchemphys.2012.11.040

Google Scholar

[12] Ravi K. Kumar V.V., Bhatnagar A.K., Jagannathan,R., (2001) J. Phys. D: Appl. Phys. 34, pp.1563-1568.

Google Scholar

[13] Azman K., W.A.W. Razali, Azhan H., M.R. Sahar, (2012), Adv. Mat. Research, Vol. 501, pp.121-125.

Google Scholar

[14] Som,T., Karmakar, B., (2008), J. Alloys Comp., 12(5), 112-124.

Google Scholar

[15] N. Elkhoshkhany, R. El-Mallawany (2014), Ceramic Int., 2(6), pp.230-240.

Google Scholar

[16] A. Noranizah, K. Azman, H. Azhan, E. S. Nurbaisyatul, A. Mardhiah (2014), J. Teknologi (Sci. & Eng. ) Vol. 69(6), pp.49-52.

DOI: 10.11113/jt.v69.3239

Google Scholar

[17] R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, B. A. Tahir, (2012), Chinese Phys. Lett. 29(8): 087304.

DOI: 10.1088/0256-307x/29/8/087304

Google Scholar

[18] R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, and R. Arifin, (2013), Opt. Mater. (Amst). 35(5), p.1103–1108.

Google Scholar