Microtextural Changes and Superplasticity in an Al-7075 Alloy Processed by High-Pressure Torsion

Article Preview

Abstract:

The influence of High-Pressure Torsion (HPT) on texture and superplasticity in an Al-7075 was studied using X-ray diffraction and tensile testing. The alloy was processed by HPT at room temperature under a pressure of 6.0 GPA up to a maximum of 20 turns. The pole figures were measured at mid-radius of the disks after 1, 5, 10 and 20 turns. The results show the presence of a typical torsion texture during HPT, in particular, the C{001}<110> component was found to develop preferentially. With increasing deformation, the A {111}<110> and the C components are reinforced after 5 turns and the texture tends to be random with the presence of a fibre texture near the center. Moreover, the fraction of C components tends to gradually decrease and a fairly isotropic microtexture is apparent after 20 turns. Tensile testing showed the development of excellent superplastic properties in this alloy with elongations up to ~700% when testing at a temperature of 623 K.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

445-450

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[2] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[3] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[4] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[5] C. Xu, Z. Horita, T.G. Langdon, The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta Mater. 56 (2008) 5168-5176.

DOI: 10.1016/j.actamat.2008.06.036

Google Scholar

[6] Z.C. Duan, X.Z. Liao, M. Kawasaki, R.B. Figueiredo, T.G. Langdon, Influence of high-pressure torsion on microstructural evolution in an Al–Zn–Mg–Cu alloyJ. Mater. Sci. 45 (2010) 4621-4630.

DOI: 10.1007/s10853-010-4400-0

Google Scholar

[7] J. Wongsa-Ngam, M. Kawasaki, Y. Zhao, T.G. Langdon, Microstructural evolution and mechanical properties of a Cu–Zr alloy processed by high-pressure torsion, Mater. Sci. Eng. A528 (2011) 7715-7722.

DOI: 10.1016/j.msea.2011.06.056

Google Scholar

[8] M. Kawasaki, S.N. Alhajeri, C. Xu, T.G. Langdon, The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion, Mater. Sci. Eng. A529 (2011) 345-351.

DOI: 10.1016/j.msea.2011.09.039

Google Scholar

[9] A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset R. Chemam, T.G. Langdon, Ultrafine grains and the Hall–Petch relationship in an Al–Mg–Si alloy processed by high-pressure torsion Mater. Sci. Eng. A532 (2012) 139-145.

DOI: 10.1016/j.msea.2011.10.074

Google Scholar

[10] S. Sabbaghianrad, M. Kawasaki, T.G. Langdon, Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion, J. Mater. Sci. 47 (2012) 7789-7795.

DOI: 10.1007/s10853-012-6524-x

Google Scholar

[11] G.B.V. Kumar, R. Pramod, Artificial neural networks for nredicting the tribological behaviour of Al7075-SiC metal matrix composites, Int. J. Mater. Sci. Eng. 1 (2014) 6-11.

Google Scholar

[12] M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, J.K. Park, Characterization of microstructure and deformation texture during equal channel Angular pressing of Al–Zn–Mg–Cu alloy, J. Alloys Compds 576 (2013) 350-357.

DOI: 10.1016/j.jallcom.2013.05.182

Google Scholar

[13] R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion, Acta Mater. 60 (2012) 3190-3198.

DOI: 10.1016/j.actamat.2012.02.027

Google Scholar

[14] K. Pawlik, Determination of the orientation distribution function from pole figures in arbitrarily defined cells, Phys. Stat. Sol. (b) 134 (1986) 477-483.

DOI: 10.1002/pssb.2221340205

Google Scholar

[15] A. Loucif, T. Baudin, F. Brisset, R.B. Figueiredo, R. Chemam, T.G. Langdon, An investigation of microtexture evolution in an AlMgSi alloy processed by high-pressure torsion, Mater. Sci. Forum 702-703 (2012) 165-168.

DOI: 10.4028/www.scientific.net/msf.702-703.165

Google Scholar

[16] A. Khereddine, F. Hadj Larbi, H. Azzeddine, T. Baudin, F. Brisset, A. Helbert, M. Mathon, M. Kawasaki, D. Bradai, T. G. Langdon, Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion, J. Alloys Compds 574 (2013).

DOI: 10.1016/j.jallcom.2013.05.051

Google Scholar

[17] T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta. Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar

[18] T.G. Langdon, An evaluation of the strain contributed by grain boundary sliding in superplasticity, Mater. Sci. Eng. A174 (1994) 225-230.

DOI: 10.1016/0921-5093(94)91092-8

Google Scholar

[19] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.

DOI: 10.1007/s10853-009-3780-5

Google Scholar