High-Temperature-Tensile-Deformation Behavior of Ti-6Al-4V Alloy with the Acicular α′ Martensite Microstructure

Article Preview

Abstract:

Titanium alloys are widely used in aerospace components, with the most widely used alloy being (α+β)-type Ti-6Al-4V (hereafter designated as Ti-64) alloy owing to its high specific strength and high formability associated with superplasticity. This work examines the tensile deformation behavior of the Ti-64 alloy with the acicular α′ martensite microstructure tested at from 700°C to 900°C. Higher tensile-elongation and higher strain-rate-sensitivity value are seen in the Ti-64 alloy with the α′ martensite microstructure as compared to that with the lamellar (α+β) microstructure. During deformation of the α′ martensite microstructure at 700°C or 800°C, acicular microstructure evolves into fine equiaxed (α+β) structure, whereas there is no apparent change in microstructure in the case of the lamellar (α+β) starting microstructure. This result indicates that dynamic globularization during deformation is strongly enhanced in the acicular α′ martensite starting microstructure, thereby leading to higher tensile elongation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

243-248

Citation:

Online since:

January 2016

Export:

Price:

[1] B. Cantor, H. Assender, and P. Grant: Aerospace materials Institute of Physics Publishing (2001) pp.15-27.

Google Scholar

[2] J.W. Edington, K.N. Melton, C.P. Cutler, Superplasticity, Progr. Mater. Sci. 21 (1976) 63-170.

Google Scholar

[3] M. Meier, A.K. Mukherjee. In: T.R. McNelly and H.C. Heikkenen, editors. Proceedings of 119th annual meeting of Shaping and Forming Committee. Warrendale (PA): TMS ; 1990. 317-332.

Google Scholar

[4] R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, A.K. Mukherjee, Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti–6Al–4V alloy, Mater. Sci. Eng. A298 (2001) 44-50.

DOI: 10.1016/s0921-5093(00)01338-1

Google Scholar

[5] Y.G. Ko, W.G. Kim, C.S. Lee, D.H. Shin, Microstructural influence on low-temperature superplasticity of ultrafine-grained Ti–6Al–4V alloy, Mater. Sci. Eng. A410-411 (2005) 156-159.

DOI: 10.1016/j.msea.2005.08.080

Google Scholar

[6] A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Enhanced superplasticity in a Ti-6Al-4V alloy processed by severe plastic deformation, Scripta Mater., 43 (2000) 819-824.

DOI: 10.1016/s1359-6462(00)00496-6

Google Scholar

[7] G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, R.Y. Lutfullin, O.N. Senkov, F.H. Froes, O.A. Kaibyshev, Equal channel angular extrusion from macro-mechanics to structure formation., J. Mater. Proc. Tech., 116 (2001) 265-268.

DOI: 10.1016/s0924-0136(01)01037-8

Google Scholar

[8] H. Matsumoto, K. Yoshida, S.H. Lee, Y. Ono, A. Chiba, Ti-6Al-4V alloy with an ultrafine-grained microstructure exhibiting low-temperature-high-strain-rate superplasticity , Mater. Lett. 98 (2013) 209-212.

DOI: 10.1016/j.matlet.2013.02.033

Google Scholar

[9] H. Matsumoto, L. Bin, S.H. Lee, Y. Li, Y. Ono, A. Chiba, Frequent occurrence of discontinuous dynamic recrystallization in Ti-6Al-4V alloy with a' starting microstructure , Metall. Mater. Trans., A 44 (2013) 3245-3260.

DOI: 10.1007/s11661-013-1655-5

Google Scholar

[10] T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Microstructural mechanisms during hot working of commercial grade Ti- 6Al-4V with lamellar starting structure, Mater. Sci. Eng. A325 (2002) 112-125.

DOI: 10.1016/s0921-5093(01)01448-4

Google Scholar

[11] T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations, Mater. Sci. Eng. A284 (2000) 184-194.

DOI: 10.1016/s0921-5093(00)00741-3

Google Scholar

[12] Y. Mishin and Chr. Herzig, Diffusion in the Ti-Al System, Acta Mater. 48 (2000) 589-623.

DOI: 10.1016/s1359-6454(99)00400-0

Google Scholar

[13] S.L. Semiatin, V. Seetharaman, I. Weiss, Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure, Mater. Sci. Eng. A263 (1999) 257-271.

DOI: 10.1016/s0921-5093(98)01156-3

Google Scholar

[14] H.J. McQueen, J.K. Solberg, N. Ryum, E. Nes, Influence of ultra-high strains at elevated temperatures on the microstructure of aluminium, Philos. Mag. A60 (1989) 473-485.

Google Scholar

[15] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Current issues in recrystallization: a review, Mater. Sci. Eng. A238 (1997) 219-274.

DOI: 10.1016/s0921-5093(97)00424-3

Google Scholar

[16] R.C. Gifkins In: N.E. Paton, C.H. Hamilton, editors, Superplastic forming of structural alloys. Warrendale: TMS-AIME; 1982. P. 3-26.

Google Scholar

[17] J.S. Kim, Y.W. Chang, C.S. Lee, Quantitative analysis on boundary sliding and its accommodation mode during superplastic deformation of two-phase Ti-6Al-4V alloy, Metall. Mater. Trans. 29A (1998) 217-226.

DOI: 10.1007/s11661-998-0174-2

Google Scholar