Influence of the Metal Particle Size and Sintering Process on the Electrical Resistivity of m-ZrO2/30%Mo Cermet

Article Preview

Abstract:

Monolithic zirconia-molybdenum (m-ZrO2/Mo) cermets have been prepared by traditional powder metallurgy process with molybdenum volume concentration of 30% and different molybdenum powders with average particle sizes of 80nm, 3μm, 8μm and 13μm. The influence of metal particle size on the morphology and electrical conductivity of the cermet has been investigated. The electrical resistivity of the cermet was measured via 4-probe DC technique from 500 °C to 1600 °C. All the samples showed the positive temperature coefficient of electrical resistivity, but the sample prepared with 80 nm molybdenum powder showed very high resistivity over 0.5 Ω·cm. Hot-press sintering was proved to be helpful to the elongated conductive phase formation, thus the electrical conductivity of cermet increased compared to the pressureless sintering process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-209

Citation:

Online since:

April 2015

Export:

Price:

[1] D. R. Sadoway, Inert anodes for the Hall-Heroult cell: The ultimate materials challenge, JOM 53 (2001) 34-35.

DOI: 10.1007/s11837-001-0206-5

Google Scholar

[2] M. O. Suk, J. H. Park, Corrosion Behaviors of Zirconia Refractory by CaO-SiO2-MgO-CaF2 Slag, J. Am. Ceram. Soc. 92 (2009) 717-723.

DOI: 10.1111/j.1551-2916.2008.02905.x

Google Scholar

[3] T. I. Borodina, G. E. Val'yano, E. P. Pakhomov, V. E. Peletskii, M. Fischer, Z. Helmann, The behavior of ZrO2 in contact with molten iron at high temperatures, Refract. Ind. Ceram+. 43 (2002) 251-259.

DOI: 10.1023/a:1021019415691

Google Scholar

[4] C. G. Aneziris, E. M. Pfaff, H. R. Maier, Corrosion mechanisms of low porosity ZrO2 based materials during near net shape steel casting, J. Eur. Ceram. Soc. 20 (2000) 159-168.

DOI: 10.1016/s0955-2219(99)00149-1

Google Scholar

[5] O. Sbaizero, G. Pezzotti, Influence of molybdenum particles on thermal shock resistance of alumina matrix ceramics, Mat. Sci. Eng. a-Struct. 343 (2003) 273-281.

DOI: 10.1016/s0921-5093(02)00370-2

Google Scholar

[6] Y. Guo, The effects of minor constituents on corrosion of zirconia by steel, Shaker Verlag, Aachen, (2005).

Google Scholar

[7] J. S. Moya, S. Lopez-Esteban, C. Pecharroman, J. F. Bartolome, Mechanically stable monoclinic zirconia-nickel composite, J. Am. Ceram. Soc. 85 (2002) 2119-2121.

DOI: 10.1111/j.1151-2916.2002.tb00416.x

Google Scholar

[8] M. Nawa, K. Yamazaki, T. Sekino, K. Niihara, Microstructure and mechanical behaviour of 3Y-TZP/Mo nanocomposites possessing a novel interpenetrated intragranular microstructure, J. Mater. Sci. 31 (1996) 2849-2858.

DOI: 10.1007/bf00355992

Google Scholar

[9] W. Jiang, R. Watanabe, Y. Yamada, A. Kawasaki, Anisotropy of thermal expansion coefficient in hot pressed Mo/PSZ composites, J. Jpn. Ins. Met. 60 (1996) 50-55.

Google Scholar

[10] W. Jiang, R. Watanabe, A. Kawasaki, Compositional dependence of thermal conductivity in sintered Mo/ZrO2 composites, J. Jpn. Ins. Met. 62 (1998) 1018-1024.

Google Scholar

[11] L. Tang, Y.L. Guo, T. Zeng, J.Y. Zhang, J.F. Xu, J.C. Li, Electrical conductivity and thermal shock resistance of Mo-ZrO2 cermet, 142nd Annual Meeting and Exhibition: Linking Science and Technology for Global Solutions. San Antonio, TX, United states: Minerals, Metals and Materials Society (2013).

Google Scholar

[12] S. Kirkpatrick, Percolation and Conduction, Reviews of Modern Physics. 45 (1973) 574-588.

Google Scholar

[13] F. Lux, Review models proposed to explain the electrical conductivity of mixtures made of conductive and insulting materials, J. Mater. Sci. 28 (1993) 285-301.

DOI: 10.1007/bf00357799

Google Scholar

[14] D.S. McLachlan, M. Blaszkiexicz, R.E. Newnham, Electrical Resistivity of Composites, J. Am. Ceram. Soc. 73 (1990) 2187-2203.

Google Scholar

[15] S. Hussain, I. Barbariol, S. Roitti, O. Sbaizero, Electrical conductivity of an insulator matrix (alumina) and conductor particle (molybdenum) composites, J. Eur. Ceram. Soc. 23 (2003) 315-321.

DOI: 10.1016/s0955-2219(02)00185-1

Google Scholar