Improved Stability of 4H-SiC MOS Device Properties by Combination of NO and POCl3 Annealing

Article Preview

Abstract:

Effects of combination of NO and POCl3 annealing on electrical properties and their stability of 4H-SiC MOS capacitors and MOSFETs were investigated. Channel mobility of MOSFETs processed with both NO and POCl3 annealing did not exceed that of POCl3 annealed MOSFETs. As for the stability of flat-band voltage and threshold voltage using a constant field stress test, the combined annealed sample indicated very stable characteristics compared with single annealed devices with NO or POCl3. The reason for obtaining stable electrical properties is discussed based on nitridation and phosphorization effects at the interface.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

727-732

Citation:

Online since:

January 2013

Export:

Price:

[1] J. A. Cooper, Jr., M. R. Melloch, R. Singh, A. Agarwal, and J. Palmour, IEEE Trans. Electron Devices 49 (2002) 658-664.

DOI: 10.1109/16.992876

Google Scholar

[2] R. Schörner, P. Friedrichs, D. Peters, and D. Stephani, IEEE Electron Device Lett. 20 (1999) 241-244.

Google Scholar

[3] A. K. Agarwal, S. Seshadri, and L. B. Rowland, IEEE Electron Device Lett. 18 (1997) 592-594.

Google Scholar

[4] A. J. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, and N. Goldsman, IEEE Trans. Electron Devices 55 (2008) 1835-1840.

DOI: 10.1109/ted.2008.926672

Google Scholar

[5] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, IEEE Electron Device Lett. 22 (2001) 176-178.

DOI: 10.1109/55.915604

Google Scholar

[6] L. A. Lipkin, M. K. Das, and J. W. Palmour, Mater. Sci. Forum 389-393 (2002) 985-988.

Google Scholar

[7] C. -Y. Lu, J. A. Cooper, Jr., T. Tsuji, G. Chung, J. R. Williams, K. McDonald, and L. C. Feldman, IEEE Trans. Electron Devices 50 (2003) 1582-1588.

DOI: 10.1109/ted.2003.814974

Google Scholar

[8] J. Rozen, A. C. Ahyi, X. Zhu, J. R. Williams, and L. C. Feldman, IEEE Trans. Electron Devices 58 (2011) 3808-3811.

DOI: 10.1109/ted.2011.2164800

Google Scholar

[9] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, IEEE Electron Device Lett. 31 (2010) 710-712.

DOI: 10.1109/led.2010.2047239

Google Scholar

[10] D. Okamoto, H. Yano, T. Hatayama, and T. Fuyuki, Appl. Phys. Lett. 96 (2010) 203508.

Google Scholar

[11] D. Okamoto, H. Yano, S. Kotake, K. Hirata, T. Hatayama, and T. Fuyuki, Mater. Res. Soc. Symp. Proc. 1246 (2010) B06-06.

Google Scholar

[12] D. Okamoto, H. Yano, T. Hatayama, and T. Fuyuki, Mater. Sci. Forum 717-720 (2012) 733-738.

DOI: 10.4028/www.scientific.net/msf.717-720.733

Google Scholar

[13] R. Morishita, H. Yano, D. Okamoto, T. Hatayama, and T. Fuyuki, Mater. Sci. Forum 717-720 (2012) 739-742.

DOI: 10.4028/www.scientific.net/msf.717-720.739

Google Scholar

[14] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, p.331, Wiley Interscience, New York (1982).

Google Scholar

[15] H. -F. Li, S. Dimitrijev, D. Sweatman, H. B. Harrison, P. Tanner, and B. Feil, J. Appl. Phys. 86 (1999) 4316-4321.

Google Scholar

[16] D. Okamoto, H. Yano, S. Kotake, T. Hatayama, and T. Fuyuki, Mater. Sci. Forum 679-680 (2011) 338-341.

DOI: 10.4028/www.scientific.net/msf.679-680.338

Google Scholar

[17] V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, Phys. Stat. Sol. (a) 162 (1997) 321-337.

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[18] H. Yano, Y. Oshiro, D. Okamoto, T. Hatayama, and T. Fuyuki, Mater. Sci. Forum 679-680 (2011) 603-606. Table 2. Threshold voltage of MOSFETs with pre/post stress of constant field of 6 MV/cm for 600 s and theri shift.

DOI: 10.4028/www.scientific.net/msf.679-680.603

Google Scholar