Photocatalytic Degradation of Organic Pollutants: A Review

Article Preview

Abstract:

Water pollution is increasing at an ever increasing pace and the whole world is in the cancerous grip of this pollution. Various industries are discharging their untreated effluents into the nearby water resources; thus, adding to the existing water pollution to a great extent. Hence, there is a pressing demand to develop an alternate technology for wastewater treatment and in this context; photocatalysis has emerged as an Advanced Oxidation Process with green chemical approach for such a treatment. This chapter deals with photocatalytic degradation of different kinds of organic pollutants; mainly surfactants, pesticides, dyes, phenols, chloro compounds, nitrogen containing compounds etc. Mechanisms of their degradation have also been discussed with hydroxyl and allied radicals as the main active oxidizing species.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-272

Citation:

Online since:

December 2012

Export:

Price:

[1] C. Belvar, R. Bellod, A. Fuerte, M. F. Garcia, Nitrogen-containing TiO2 photocatalysts : Part 1. Synthesis and solid characterization, Appl. Catal. B: Environ., 65 (2006) 301-308.

DOI: 10.1016/j.apcatb.2006.02.007

Google Scholar

[2] A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, J. Chem. Revs., 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[3] N. Serpone, Brief introductory remarks on heterogeneous photocatalysis, Solar Energy Mater. Solar Cells, 38 (1995) 369-379.

DOI: 10.1016/0927-0248(94)00230-4

Google Scholar

[4] S. C. Ameta, R. Ameta, J. Vardia, R. Ameta, Z. Ali, Photocatalysis : A Frontier of Photochemistry, J. Indian Chem. Soc., 76(6) (1999) 281-287.

Google Scholar

[5] Y. Cho, W. Choi, Visible light-induced reactions of humic acids on TiO2, J. Photochem. Photobiol., 148A (2002) 129-135.

Google Scholar

[6] S. C. Ameta, R. Chaudhary, R. Ameta, J. Vardia, Photocatalysis : A Promising technology for wastewater treatment, J. Indian Chem. Soc., 80(4) (2003), 257-265.

Google Scholar

[7] Y. Cho, W. Choi, C. H. Lee, T. Hyeon, H. I. Lee, Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2, Environ. Sci. Technol., 35 (2001) 966-970.

DOI: 10.1021/es001245e

Google Scholar

[8] M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res., 44 (2010) 2997-3027.

DOI: 10.1016/j.watres.2010.02.039

Google Scholar

[9] I. Bouzaida, C. Ferronato, J. M. Chovelon, M. E. Rammah, J. M. Herrmann, Heterogeneous photocatalytic degradation of the anthraquinonic dye, acid blue 25 (AB25): A kinetic approach, J. Photochem. Photobiol., 168 A (2004) 23-30.

DOI: 10.1016/j.jphotochem.2004.05.008

Google Scholar

[10] J. Herrmann, F. Jansen, R. A. Van Santen (Eds. ), Water treatment by heterogeneous Photocatalysis, Catalysis Science Series, Vol. 1, Chapter 9, Imperial College Press, London, 1999, 171 – 194.

Google Scholar

[11] J. M. Hermann, Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53 (1999) 115-129.

DOI: 10.1016/s0920-5861(99)00107-8

Google Scholar

[12] J. Shang, Y. Du, Z. Xu, Photocatalytic oxidation of heptane in the gas-phase over TiO2, Chemosphere, 46 (2002) 93-99.

DOI: 10.1016/s0045-6535(01)00115-1

Google Scholar

[13] H. Park, W. Choi, Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates, Catal. Today, 101 (2005) 291-297.

DOI: 10.1016/j.cattod.2005.03.014

Google Scholar

[14] T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama, Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide, Environ. Sci. Technol., 30 (1996) 1275-1281.

DOI: 10.1021/es950483k

Google Scholar

[15] N. Takeda, T. Torimoto, S. Sampath, S. Kuwabata, H. Yoneyama, Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde, J. Phys. Chem., 99 (1995) 9986-9991.

DOI: 10.1021/j100024a047

Google Scholar

[16] A. Tang, Y. Xiao, J. Ouyang, S. Nie, Preparation, photocatalytic activity of cuprous oxide nano-crystallites with different sizes, J. Alloys and Comp., 457 (2008) 447-451.

DOI: 10.1016/j.jallcom.2007.02.148

Google Scholar

[17] M. Rezaei, S. M. Alavi, S. Sahebdelfar, Z. F. Yan, Mesoporous nanocrystalline zirconia powders: A promising support for nickel catalyst in CH4 reforming with CO2, Mater. Lett., 61 (2007) 2628-2631.

DOI: 10.1016/j.matlet.2006.10.053

Google Scholar

[18] A. Fuerte, M. D. Hernandez–Alonso, J. Maria, A. Martinez–Arias and M. F. Fernandez–Garcia, J. C. Conesa, J. Soria, G. Munuera, Nanosize Ti–W mixed oxides: Effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation, J. Catal., 212 (2002).

DOI: 10.1006/jcat.2002.3760

Google Scholar

[19] T. Hernández, F. Plazaola, T. Rojo, J. M. Barandiarán, Fe doping in La0. 7Sr0. 3MnO3 magnetoresistant perovskite, J. Alloys Comp., 323-324 (2001) 440-443.

DOI: 10.1016/s0925-8388(01)01074-x

Google Scholar

[20] A. Lair, C. Ferronato, J. M. Chovelon, J. M. Herrmann, Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions, J. Photochem. Photobiol., 193A (2007) 193-203.

DOI: 10.1016/j.jphotochem.2007.06.025

Google Scholar

[21] P. Zhang, F. Liang, G. Yu, Q. Chen, W. Zhu, A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV, J. Photochem. Photobiol., 156A (2003) 189-194.

DOI: 10.1016/s1010-6030(02)00432-x

Google Scholar

[22] G. Marci, M. Addano, V. Augugliaro, S. Coluccia, E. Garcia–Lopez, V. Laddo, G. Mastra, Photocatalytic oxidation of toluene on irradiated TiO2: Comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant, J. Photochem. Photobiol., 160A (2003).

DOI: 10.1016/s1010-6030(03)00228-4

Google Scholar

[23] T. Garcia, B. Solsona, D. M. Murphy, K. L. Antcliff, S. H. Taylor, Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts, J. Catal., 229 (2005) 1-11.

DOI: 10.1016/j.jcat.2004.09.018

Google Scholar

[24] S. Yamazaki, N. Yamabe, S. Nagano, A. Fukuda, Adsorption and photocatalytic degradation of 1, 4-dioxane on TiO2, J. Photochem. Photobiol., 185A (2007) 150-155.

DOI: 10.1016/j.jphotochem.2006.05.024

Google Scholar

[25] J. Kirchnerova, M. L. Cohen, C. Guy, D. Klvana, Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25), Appl. Catal., 282A (2005) 321-332.

DOI: 10.1016/j.apcata.2004.12.045

Google Scholar

[26] S. Klosek, D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, J. Phys. Chem., B, 105 (2001) 2815-2819.

DOI: 10.1021/jp004295e

Google Scholar

[27] T. Kawai and T. Sakata, Photocatalytic hydrogen production from liquid methanol and water, J. Chem. Soc. Chem. Commun., 15, 694 (1980).

DOI: 10.1039/c39800000694

Google Scholar

[28] O. S. Mohamed, A. M. Gaber and A. A. Abdel-Wahab, Photocatalytic oxidation of selected aryl alcohols in acetonitrile, J. Photochem. Photobiol., 148A, 205 (2002).

DOI: 10.1016/s1010-6030(02)00044-8

Google Scholar

[29] S. Yanagida, Y. Ishimarru, Y. Mujake, T. Shiragami, K. Hashimoto and T. Sakata, Semiconductor photocatalysis. 8. Zinc sulfide-catalyzed photoreduction of aldehydes and related derivatives: Two-electron-transfer reduction and relationship with spectroscopic properties, J. Phys. Chem., 93, 2576 (1989).

DOI: 10.1021/j100343a066

Google Scholar

[30] M. Kanemoto, H. Ankyee, Y. Wada and S. Yanagida, Chem. Lett., 20, 2113 (1991).

Google Scholar

[31] O. Heintz, D. Robert and J. V. Weber, Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol., 135A, 77 (2000).

DOI: 10.1016/s1010-6030(00)00255-0

Google Scholar

[32] A. Assabbane, Y. A. Ichou, H. Tahiri, C. Guillard, J. N. Herrmann, Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania.: Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1, 2, 4-benzene tricarboxylic acid), Appl. Catal., 24B (2000).

DOI: 10.1016/s0926-3373(99)00094-6

Google Scholar

[33] Y. Li, G. Lu, S. Li, Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2, Appl. Catal., 214A (2001) 179-185.

DOI: 10.1016/s0926-860x(01)00491-4

Google Scholar

[34] J. Sukhaser, A. Wold, Y. M. Gao, K. Dwight, Photoassisted decomposition of salicylic acid on TiO2 and Pd/TiO2 films, J. Solid State Chem., 119 (1995) 339-343.

DOI: 10.1016/0022-4596(95)80050-y

Google Scholar

[35] H. Ogawa, Orientation of benzoic acid and terephthalic acid on an alumina surface and their reactivities observed by infrared spectroscopy, J. Phys. Org. Chem., 4 (1991) 346-352.

DOI: 10.1002/poc.610040605

Google Scholar

[36] L. Davydov, E. P. Reddy, P. France, P. G. Smirniotis, Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders, Appl. Catal. B, Environ., 32 (2001) 95-105.

DOI: 10.1016/s0926-3373(01)00126-6

Google Scholar

[37] A. Mills, C. E. Holland, R. H. Davies, D. Worsely, Photomineralisation of salicylic acid: A kinetic study, J. Photochem. Photobiol., 83A (1994) 257-263.

Google Scholar

[38] M. G. Kang, H. S. Jung, K. J. Kim, Effect of chloride ions on 4-chlorophenol photodegradation in the absence and presence of titanium silicalite-2, J. Photochem. Photobiol., 136A (2000) 117-123.

DOI: 10.1016/s1010-6030(00)00327-0

Google Scholar

[39] J. Chen, L. Eberlein, C. H. Cooper, H. Langford, Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite, J. Photochem. Photobiol., 148A (2002) 183-189.

DOI: 10.1016/s1010-6030(02)00041-2

Google Scholar

[40] S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Ed., 42 (2003) 4908-4911.

DOI: 10.1002/anie.200351577

Google Scholar

[41] A. Hatipoglu, N. San, Z. Cinar, Effect of molecular properties on the photocatalytic degradation rates of dichlorophenols and dichloroanilines, J. Photochem. Photobiol., 165A (2004) 119-129.

Google Scholar

[42] Z. H. Yuan, J. H. Jia, L. D. Zhang, Study on photocatalytic degradation of Cl-VOCs using pure and metal-ions doping TiO2 prepared by the sol-gel method, Mater. Chem. Phys., 73 (2002) 323-326.

Google Scholar

[43] N. San, A. Hathipoglu, G. Kocturk, Z. Cinar, Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO2 suspensions, J. Photochem. Photobiol., 139A (2001) 225-232.

DOI: 10.1016/s1010-6030(01)00368-9

Google Scholar

[44] A. Sclafani, L. Pamisano, M. Schiavello, Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion, J. Phys. Chem., 94 (1990) 829-832.

DOI: 10.1021/j100365a058

Google Scholar

[45] M. Mrowetz, C. Pirola, E. Selli, Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2, Ultrasonics Sonochem., 10 (2003) 247-254.

DOI: 10.1016/s1350-4177(03)00090-7

Google Scholar

[46] Z. Shirgaonkar, A. B. Pandit, Sonophotochemical destruction of aqueous solution of 2, 4, 6-trichlorophenol, Ultrasonics Sonochem., 5 (1998) 53-61.

DOI: 10.1016/s1350-4177(98)00013-3

Google Scholar

[47] D. F. Ollis, Contaminant degradation in water, Environ. Sci. Technol., 19 (1985) 480-484.

Google Scholar

[48] D. Cesareo, D. A. Di, S. Marchini, L. Passerini, M. L. Tosato, Environmental photochemistry of chlorinated aromatics in aqueous media, A review of data, Homo. -Hetero. Photocatal., 174 (1986) 593-627.

DOI: 10.1007/978-94-009-4642-2_35

Google Scholar

[49] D. F. Ollis, E. Pelizzetti, N. Serpone, Photocatalyzed destruction of water contaminants, Environ. Sci. Technol., 25 (1991) 1522-1529.

DOI: 10.1021/es00021a001

Google Scholar

[50] S. Lunak, P. Sedlak, Photoinitiated reactions of hydrogen peroxide in the liquid phase, J. Photochem. Photobiol., 68A (1992) 1-33.

Google Scholar

[51] M. Julliard, M. Chanon, A. Galadi, Photodechlorination of mono and polychlorobenzenes by reductive photosensitization, J. Photochem. Photobiol., 83A (1994) 107-112.

DOI: 10.1016/1010-6030(94)03811-2

Google Scholar

[52] W. Choi, M. R. Hoffmann, Novel photocatalytic mechanisms for CHCl3, CHBr3, and CCl3CO2– degradation and the fate of photogenerated trihalomethyl radicals on TiO2, Environ Sci. Technol., 31 (1997) 89-95.

DOI: 10.1021/es960157k

Google Scholar

[53] W. Choi, S. J. Hong,Y. – S. Chang and Y. Cho, Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation, Environ Sci. Technol., 34 (2000) 4810-4815.

DOI: 10.1021/es0011461

Google Scholar

[54] J. Jirkovsky, V. Faure, P. Boule, Photolysis of Diuron, Pestic Sci. 50 (1997) 42-52.

DOI: 10.1002/(sici)1096-9063(199705)50:1<42::aid-ps557>3.0.co;2-w

Google Scholar

[55] H. Krysova, J. Krysa, K. Macounova, J. Jirkovsky, Photocatalytic degradation of diuron [3-(3, 4- dichlorophenyl)-1, 1-dimethylurea] on the layer of TiO2 particles in the batch mode plate film reactor, J. Chem. Technol. Biotechnol., 72 (1998).

DOI: 10.1002/(sici)1097-4660(199806)72:2<169::aid-jctb882>3.0.co;2-i

Google Scholar

[56] K. Macounova, H. Krysova. J. Ludvik, J. Jirkovsky, Kinetics of photocatalytic degradation of diuron in aqueous colloidal solutions of Q-TiO2 particles, J. Photochem. Photobiol., 156A (2003) 273-282.

Google Scholar

[57] T. Pandiyan, O. M. Rivas, J. O. Martinez, G. B. Amezcua, M. A. Martinez-Carrillo, Comparison of methods for the photochemical degradation of chlorophenols, J. Photochem. Photobiol., 146A (2002) 149-155.

DOI: 10.1016/s1010-6030(01)00606-2

Google Scholar

[58] D. S. Bhatkhande, S. B. Sawant, J. C. Schouten, V. G. Pangarkar, Photocatalytic degradation of chlorobenzene using solar and artificial UV radiation, J. Chem. Technol. Biotechnol., 79(4) (2004) 354-360.

DOI: 10.1002/jctb.980

Google Scholar

[59] M. Lapertot, P. Pichat, S. Parra, C. Guillard, C. Pulgarin, Photocatalytic degradation of p-halophenols in TiO2 aqueous suspensions: Halogen effect on removal rate, aromatic intermediates and toxicity variations, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 41(6) (2006).

DOI: 10.1080/10934520600620188

Google Scholar

[60] A. H. Dwivedi, U. C. Pande, Photochemical degradation of halogenated compounds: A review, Sci. Revs. Chem. Commun., 2(1) (2012) 41-65.

Google Scholar

[61] M. Kerzhentsev, C. Guillard, J. M. Herrmann, P. Pichat, Photocatalytic pollutant removal in water at room temperature : Case study of the total degradation of the insecticide fenitrothion (phosphorothioic acid O, O-dimethyl-O-(3-methyl-4-nitro-phenyl) ester), Catal. Today 27 (1996).

DOI: 10.1016/0920-5861(95)00190-5

Google Scholar

[62] R. Doong, W. Chang, Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide, J. Photochem. Photobiol., 107A, (1997) 239 -244.

DOI: 10.1016/s1010-6030(96)04579-0

Google Scholar

[63] J. M. Hermann, C. Guillard, M. Arguello, A. Aguera, A. Tejedor, L. Piedra, A. Fernandez-Alba, Photocatalytic degradation of pesticide pirimiphos-methyl: Determination of the reaction pathway and identification of intermediate products by various analytical methods, Catal Today, 54 (1999).

DOI: 10.1016/s0920-5861(99)00196-0

Google Scholar

[64] A. Zaleska, J. Hupka, M. Wiergowski, M. Biziuk, Photocatalytic degradation of lindane, p, p'-DDT and methoxychlor in an aqueous environment, J. Photochem. Photobiol., 135A (2000) 213-220.

DOI: 10.1016/s1010-6030(00)00296-3

Google Scholar

[65] W. Choi, S. J. Hong, Y. S. Chang, Y. Cho, Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation, Environ. Sci. Technol., 34 (2000) 4810-4815.

DOI: 10.1021/es0011461

Google Scholar

[66] G. H. Liu, Y. F. Zhu, X. R. Zhang, B. Q. Xu, Chemiluminescence determination of chlorinated volatile organic compounds by conversion on nanometer TiO2, Anal. Chem., 24 (2002) 6279-6284.

DOI: 10.1021/ac025882u

Google Scholar

[67] L. Muszkat, L. Feigelson, L. Bir, K. A. Muszkat, Photocatalytic degradation of pesticides and bio-molecules in water, Pest Manag. Sci., 58(11) (2002) 1143-1148.

DOI: 10.1002/ps.578

Google Scholar

[68] I. K. Konstantinou, T. A. Albanis, Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways, Appl. Catal. B: Environ., 42 (2003) 319-335.

DOI: 10.1016/s0926-3373(02)00266-7

Google Scholar

[69] M. Tamini, S. Qourzal, A. Assabane, J. -M. Chovelon, C. Ferronato, Y. Ait-Ichou, Photocatalytic degradation of pesticide methomyl: Determination of the reaction pathway and identification of intermediate products, Photochem. Photobiol. Sci., 5 (2006).

DOI: 10.1039/b517105a

Google Scholar

[70] B. Yu, J. Zeng, L. Gong, M. Zhang, L. Zhang, X. Chen, Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film, Talanta, 72 (2007) 1667-1674.

DOI: 10.1016/j.talanta.2007.03.013

Google Scholar

[71] J. Senthilnathan, L. Philip, Removal of mixed pesticides from drinking water system using surfactant-assisted nano-TiO2, Water, Air and Soil pollution, 210(1-4) (2010) 143-154.

DOI: 10.1007/s11270-009-0230-6

Google Scholar

[72] R. Zhang, J. Wang, J. Choi, L. Hu, K. Mu, Photocatalytic degradation of pesticide residues with Re3+-doped nano-TiO2, J. Rare Earths, 28(S) (2010) 353-356.

DOI: 10.1016/s1002-0721(10)60329-8

Google Scholar

[73] J. Senthilnathan, L. Philip, Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2, Chem. Engg. J., 161(1-2) (2010) 83-92.

DOI: 10.1016/j.cej.2010.04.034

Google Scholar

[74] H. Hidaka, S. Yamada, S. Suenaga, J. Zhao, N. Serpone, E. Pelizzetti, Photodegradation of surfactants VI : Complete photocatalytic degradation of anionic, cationic, and nonionic surfactants in aqueous semiconductor dispersions, J. Mol. Catal., 59(3) (1990).

DOI: 10.1016/0304-5102(90)85101-m

Google Scholar

[75] B. Singhal, A. Porwal, A. Sharma, R. Ameta, S. C. Ameta, Photocatalytic degradation of cetylpyridinium chloride over titanium dioxide powder, J. Photochem. Photobiol., 108A (1997) 85-88.

DOI: 10.1016/s1010-6030(97)00009-9

Google Scholar

[76] N. Nageshwar Rao, S. Dube, Photocatalytic degradation of mixed surfactants and some commercial soap/detergent products using suspended TiO2 catalysts, J. Mol. Catal. A: Chem., 104(3) (1996) 197-199.

DOI: 10.1016/1381-1169(95)00259-6

Google Scholar

[77] T. Kimura, N. Yoshikawa, N. Matsumura and Y. Kawase, Photocatalytic degradation of nonionic surfactants with immobilized TiO2 in an airlift reactor, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 39(11-12) (2004) 2867-2881.

DOI: 10.1081/lesa-200034072

Google Scholar

[78] C. Lizama, C. Bravo, C. Caneo, M. Ollino, Photocatalytic degradation of surfactants with immobilized TiO2: Comparing two reaction systems, Environ. Technol., 26(8) (2005) 909-914.

DOI: 10.1080/09593332608618496

Google Scholar

[79] A. M. Amat, A. Arques, M. A. Miranda, S. Sequi, Photo-Fenton reaction for the abatement of commercial surfactants in a solar pilot plant, Solar Energy, 77(5) (2004) 559-566.

DOI: 10.1016/j.solener.2004.03.028

Google Scholar

[80] M. -U. -Hassan, J. Anwar. M. J. Saif, Photocatalytic degradation of Hexadecyl trimethyl ammonium chloride C19H42NCl, J. Sci. Res., 38(2) (2008) 29-34.

Google Scholar

[81] C. Han, Z. Li, J. Shen, Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2–Cu2O under visible irradiation, J. Hazard Mater., 168(1) (2009) 215-219.

DOI: 10.1016/j.jhazmat.2009.02.020

Google Scholar

[82] E. S. -Bardos, O. Markovics, O. Horvath, N. Toro, G. Kiss, Photocatalytic degradation of benzenesulfonate on colloidal titanium dioxide, Water Res., 45(4) (2011) 1617-1628.

DOI: 10.1016/j.watres.2010.11.045

Google Scholar

[83] G. K. C. Low, Stephen R. McEvoy, R. W. Mathews, Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms, Environ. Sci. Technol., 25(3) (1991) 460-467.

DOI: 10.1021/es00015a013

Google Scholar

[84] C. Ciping, L. Daohui, X. Guangzhi, Free radicals generated in photocatalytic oxidation of some organic compounds containing nitrogen atoms, J. Environ. Sci., 5(4) (1993) 464-469.

Google Scholar

[85] K. Takeda, K. Fujiwara, Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation, Water Res., 30(2) (1996) 323-330.

DOI: 10.1016/0043-1354(95)00171-9

Google Scholar

[86] P. Piccinini, C. Minero, M. Vincenti, E. Pelizzetti, Photocatalytic mineralization of nitrogen-containing benzene derivatives, Catal. Today, 39(3) (1997) 187-195.

DOI: 10.1016/s0920-5861(97)00100-4

Google Scholar

[87] R. J. Tayade, R. G. Kulkarni, R. V. Jasra, Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2, Ind. Eng. Chem. Res., 45 (2006) 922-927.

DOI: 10.1021/ie051060m

Google Scholar

[88] R. J. Tayade, D. L. Key, Synthesis and characterization of titanium dioxide nanotubes for photocatalytic degradation of aqueous nitrobenzene in the presence of sunlight, Material Science Forum: Current Application of Polymer and Nano materials, 657 (2010).

DOI: 10.4028/www.scientific.net/msf.657.62

Google Scholar

[89] M. Mare, G. Waldner, R. Bauer, H. Jacobs, J. A. C. Broekaert, Degradation of nitrogen containing organic compounds by combined photocatalysis and ozonation, Chemosphere, 38(9) (1999) 2013-(2027).

DOI: 10.1016/s0045-6535(98)00414-7

Google Scholar

[90] M. Klare, J. Schaen, K. Vogelsang, H. Jacobs, J. A. C. Broekaert, Degradation of short-chain alkyl- and alkanolamines by TiO2- and Pt/TiO2-assisted photocatalysis, Chemosphere, 41(3) (2000) 353-362.

DOI: 10.1016/s0045-6535(99)00447-6

Google Scholar

[91] P. K. Surolia, M. A. Lazar, R. J. Tayade, R. V. Jasra, Photocatalytic degradation of 3, 3'-dimethylbiphenyl-4, 4'- diamine (o-Tolidine) over nanocrystalline TiO2 synthesized by sol-gel, solution combustion, and hydrothermal methods, Ind. Eng. Chem. Res., 47 (2008).

DOI: 10.1021/ie800073j

Google Scholar

[92] R. M. Alberici, M. C. Canela, M. N. Eberlin, W. F. Jardim, Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV–VIS, Appl. Catal. B: Environ., 30(3-4) (2001) 389-397.

DOI: 10.1016/s0926-3373(00)00256-3

Google Scholar

[93] S. Horikoshi, H. Hidaka, Photodegradation mechanism of heterocyclic two-nitrogen containing compounds in aqueous TiO2 dispersions by computer simulation, J. Photochem. Photobiol., 141A (2001) 201-208.

DOI: 10.1016/s1010-6030(01)00447-6

Google Scholar

[94] S. Devahasdin, C. Fan, K. Li, D. H. Chen, TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics, J. Photochem. Photobiol., 156A (2003) 161-170.

DOI: 10.1016/s1010-6030(03)00005-4

Google Scholar

[95] H. Wang, Z. Wu, W. Zhao, B. Guan, Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric, Chemosphere, 66(1) (2007) 185-190.

DOI: 10.1016/j.chemosphere.2006.04.071

Google Scholar

[96] J. Jing, M. Liu, V. L. Colvin, W. Li, W. W. Yu, Photocatalytic degradation of nitrogen-containing organic compounds over TiO2, J. Mol. Catal. A: Chem., 351 (2011) 17-28.

DOI: 10.1016/j.molcata.2011.10.002

Google Scholar

[97] V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion, Appl. Catal., 69(1) (1991) 323-340.

DOI: 10.1016/s0166-9834(00)83310-2

Google Scholar

[98] R. Dillert, M. Brandt, I. Fornefett, U. Siebers, D. Bahnemann, Photocatalytic degradation of trinitrotoluene and other nitroaromatic compounds, Chemosphere, 30(12) (1995) 2333-2341.

DOI: 10.1016/0045-6535(95)00105-h

Google Scholar

[99] R. Dillert, I. Fornefett, U. Siebers, D. Bahnemann, Photocatalytic degradation of trinitrotoluene and trinitrobenzene: Influence of hydrogen peroxide, J. Photochem. Photobiol., 94A (1996) 231-236.

DOI: 10.1016/1010-6030(95)04210-5

Google Scholar

[100] D. C. Schmelling, K. A. Gray, Photocatalytic transformation and mineralization of 2, 4, 6-trinitrotoluene (TNT) in TiO2 slurries, Water Res., 29(12) (1995) 2651-2662.

DOI: 10.1016/0043-1354(95)00136-9

Google Scholar

[101] M. Nahen, D. Bahnemann, R. Dillert, G. Fels, Photocatalytic degradation of trinitrotoluene: Reductive and oxidative pathways, J. Photochem. Photobiol., 110A (1997) 191-199.

DOI: 10.1016/s1010-6030(97)00171-8

Google Scholar

[102] L. Le Campion, C. Giannotti, J. Ouazzani, Photocatalytic degradation of 5-nitro-1, 2, 4-triazol-3-one NTO in aqueous suspention of TiO2. Comparison with Fenton oxidation, Chemosphere, 38(7) (1999) 1561-1570.

DOI: 10.1016/s0045-6535(98)00376-2

Google Scholar

[103] A. Schmidt, W. Butte, Photocatalytic degradation of reduction products of 2, 4, 6-trinitrotoluene (TNT), Chemosphere, 38(6) (1999) 1293-1298.

DOI: 10.1016/s0045-6535(98)00530-x

Google Scholar

[104] K. -H. Wang, Y. -H. Hsieh, M. -Y. Chou, C. -Y. Chang, Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Appl. Catal. B: Environ., 21 (1999) 1-8.

DOI: 10.1016/s0926-3373(98)00116-7

Google Scholar

[105] B. Zhao, I. Pio, J. Li, L. Palmisano, G. Vasapollo, Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst, J. Hazard Mater., 176(1-3) (2010) 569-574.

DOI: 10.1016/j.jhazmat.2009.11.066

Google Scholar

[106] O. V. Makarova, T. Rajh, M. C. Thurnauer, Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene, Environ. Sci. Technol., 34(22) (2000) 4797-4803.

DOI: 10.1021/es001109+

Google Scholar

[107] M. S. Vohra, K. Tanaka, Photocatalytic degradation of nitrotoluene in aqueous TiO2 suspension, Water Res., 36(1) (2002) 59-64.

DOI: 10.1016/s0043-1354(01)00190-7

Google Scholar

[108] M. Bekbolet, Z. C. M. Kilic, C. S. Uyguner, C. Minero, E. Pelizzetti, Photocatalytic oxidation of dinitronaphthalenes: Theory and experiment, Chemosphere, 75(8) (2009) 1008-1014.

DOI: 10.1016/j.chemosphere.2009.01.051

Google Scholar

[109] S. S. Shukla, K. L. Dorris, B. V. Chikkoveerajah, Photocatalytic degradation of 2, 4-dinitrophenol, J. Hazad Mater., 164(1) (2009) 310-314.

Google Scholar

[110] H. Wang, H. L. Wang, W. F. Jiang, Solar photocatalytic degradation of 2, 6-dinitro-p-cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)–TiO2 composite photocatalysts, Chemosphere, 75(8) (2009) 1105-1111.

DOI: 10.1016/j.chemosphere.2009.01.014

Google Scholar

[111] M. Ye, T. Zhang, Z. Zhu, Y. Zhang, Y. Zhang, Photodegradation of 4-chloronitrobenzene in the presence of aqueous titania suspensions in different gas atmospheres, Water Sci. Technol., 64(7) (2011) 1466-1472.

DOI: 10.2166/wst.2011.531

Google Scholar

[112] T. Tatsuma, S. Tachibana, T. Miwa, D. A. Tryk, A. Fujishima, Remote bleaching of methylene blue by UV-irradiated TiO2 in the gas phase, J. Phys. Chem. B, 103(38) (1999) 8033-8035.

DOI: 10.1021/jp9918297

Google Scholar

[113] A. Houas, H. Lachheb, N. Ksibi, E. Elaloui, C. Guillard, J. -M. Hermann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B: Environ., 31(2) (2001) 145-157.

DOI: 10.1016/s0926-3373(00)00276-9

Google Scholar

[114] A. Ameta, I. Bhati, R. Ameta, S. C. Ameta, Use of nanosized chromium doped TiO2 supported on zeolite for methylene blue degradation, Indo. J. Chem., 10(1) (2010) 20-25.

DOI: 10.22146/ijc.21475

Google Scholar

[115] K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes, Water Res., 34(1) (2000) 327-333.

DOI: 10.1016/s0043-1354(99)00093-7

Google Scholar

[116] M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, P. Falaras, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation, J. Catal., 220 (2003) 127-135.

DOI: 10.1016/s0021-9517(03)00241-0

Google Scholar

[117] S. Liu, T. Xie, Z. Chen, J. Wu, Highly active V–TiO2 for photocatalytic degradation of methyl orange, Appl. Surf. Sci., 225 (2009) 8587-8592.

DOI: 10.1016/j.apsusc.2009.06.029

Google Scholar

[118] H. Wei, X. H. Tang, J. R. Liang, S. Y. Tan, Preparation, characterization and photocatalytic activities of boron- and cerium-codoped TiO2, J. Environ. Sci. (China), 19 (2007) 90-96.

DOI: 10.1016/s1001-0742(07)60015-1

Google Scholar

[119] T. Tang, J. Zhang, B. Tian, F. Chen, D. He, M. Anpo, Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity, J. Colloid Interface Sci., 315 (2007).

DOI: 10.1016/j.jcis.2007.06.051

Google Scholar

[120] D. Zhao, C. Chen, Y. Wang, W. Ma, J. Zhao, T. Rajh, L. Zhang, Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: Structure, interaction, and interfacial electron transfer, Environ. Sci. Technol., 42 (2008).

DOI: 10.1021/es071770e

Google Scholar

[121] R. J. Tayade, R. G. Kulkarni, R. V. Jasra, Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water, Indus. Engg. Chem. Res., 45 (2006) 5231-5238.

DOI: 10.1021/ie051362o

Google Scholar

[122] Y. Ou, J. O. Lin, H. M. Zou, Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms., J. Mol. Catal., 241A (2005) 59-64.

DOI: 10.1016/j.molcata.2005.06.054

Google Scholar

[123] M. E. Fabiyi, R. L. Shelton, Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads, J. Photochem. Photobiol., 132A (2000) 121-128.

DOI: 10.1016/s1010-6030(99)00250-6

Google Scholar

[124] Y. Kim, M. Yoon, TiO2/Y-zeolite encapsulating intramolecular charge transfer molecules: A new photocatalyst for photoreduction of methyl orange in aqueous medium, J. Mol. Catal., 168A (2001) 257-263.

DOI: 10.1016/s1381-1169(00)00541-0

Google Scholar

[125] Y. Kim, B. I. Lee, M. Yoon, Excited-state intramolecular charge transfer of p-N, N-dimethylaminobenzoic acid in Y zeolites: Hydrogen-bonding effects, Chem. Phys. Lett. 286 (1998) 466-472.

DOI: 10.1016/s0009-2614(98)00125-0

Google Scholar

[126] J. J. Lee, Y. Kim, M. Yoon, Photoreduction of methyl orange catalyzed by nile red-adsorbed TiO2/Y zeolites using visible light, J. Photosci., 8 (2001) 27-32.

Google Scholar

[127] K. V. Subbarao, B. Srinivas, A. R. Prasad, M. Subrahmanyam, A novel one-step synthesis of trans-1, 4, 6, 9-tetraazabicyclo[4. 4. 0]decane over TiO2/zeolite composite photocatalysts, Chem. Lett., 2 (2002) 236-237.

DOI: 10.1246/cl.2002.236

Google Scholar

[128] K. V. Subbarao, M. Subrahmanyam, B. Srinivas, A. R. Prasad, A novel one step photocatalytic synthesis of dihydropyrazine from ethylenediamine and propylene glycol, Chem. Commun., (2000) 1533-1544.

DOI: 10.1039/b003934i

Google Scholar

[129] B. Pare, P. Singh, S. B. Jannalgadda, Artificial light assisted photocatalytic degradation of lissamine fast yellow dye in ZnO suspension in a slurry batch reactor, Indian J. Chem., 48A (2009) 1364-1369.

Google Scholar

[130] R. Ameta, S. Jain, C. V. Bhatt, S. C. Ameta, Photocatalytic degradation of orange-G on ZnO powder in the presence of surfactant, Rev. Roum. Chim., 45 (2000) 49-56.

Google Scholar

[131] S. Chakrabarti, B. K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater., 112 (2004) 269-278.

DOI: 10.1016/j.jhazmat.2004.05.013

Google Scholar

[132] R. A. Mansoori, S. Kothari, R. Ameta, Use of ZnO as a photocatalyst in photocatalytic bleaching of Rhodamine, J. Indian Chem. Soc., 81 (2004) 335-337.

Google Scholar

[133] S. Kothari, N. Jain, R. Ameta, Photocatalytic bleaching of amaranth dye over ZnO powder, Indian J. Chem. Tech., 11 (2004) 423-426.

Google Scholar

[134] R. Ameta, J. Vardia, P. B. Punjabi, S. C. Ameta, Use of semiconducting iron(III) oxide in photocatalytic bleaching of some dyes, Indian J. Chem. Tech., 13 (2006) 114-118.

Google Scholar

[135] S. C. Ameta, A. Sharma, R. Sharma, S. S. Rathore, Use of ZnO particulate system as a photocatalyst : Photobleaching of rose bengal, J. Indian Chem. Soc., 79 (2002) 929-931.

Google Scholar

[136] M. J. Height, S. E. Pratsinis, O. Mekasuwadumorong, P. Praserthdam, Ag-ZnO catalysts for UV-photodegradation of methylene blue, Appl. Catal. B : Environ. 63 (2006) 305-312.

DOI: 10.1016/j.apcatb.2005.10.018

Google Scholar

[137] C. H. Ye, Y. Bando, G. Shen, D. Golberg, Thickness dependent photocatalytic performance of ZnO nanoplatelets, J. Phys. Chem., 110 (2006) 15146-15151.

DOI: 10.1021/jp061874w

Google Scholar

[138] D. L. Liao, C. A. Badour, B. Q. Liao, Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange, J. Photochem. Photobiol., 194A (2008) 11-19.

DOI: 10.1016/j.jphotochem.2007.07.008

Google Scholar

[139] R. Comparelli, E. Fanizza, M. L. Curri, P. D. Cozzoli, G. Mascolo, A. Agoatiano, UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates, Appl. Catal. B : Environ. 60 (2005) 1-11.

DOI: 10.1016/j.apcatb.2005.02.013

Google Scholar

[140] R. Vyas, H. Swarnkar, S. C. Ameta, Photocatalytic bleaching of eosin using ZnO: Effect of surface charge, Chem Environ. Res., 14 (2005) 71-78.

Google Scholar

[141] S. Kothari, P. Ameta, R. Ameta, Photocatalytic bleaching of Evans blue over zinc oxide particulate system, Indian J. Chem., 46A (2007) 432-435.

Google Scholar

[142] P. B. Punjabi, R. Ameta, R. Vyas, S. Kothari, Photoreduction of congo red by ascorbic acid and EDTA over cadmium sulphide as photocatalyst, Indian J. Chem., 44A (2005) 2266-2269.

Google Scholar

[143] L. Zhang, C. Y. Liu, X. M. Ren, Photochemistry of semiconductor particles 3. Effects of surface charge on reduction rate of methyl orange photosensitized by ZnS sols, J. Photochem. Photobiol., 85A (1995) 239-245.

DOI: 10.1016/1010-6030(94)03918-k

Google Scholar

[144] D. Vaya, S. Benjamin, V. K. Sharma, S. C. Ameta, Effect of transition metal ions doping on ZnS, Bull. Catal. Soc. India, 7 (2008) 56.

Google Scholar

[145] J. H. Li, A. H. Lu, F. Liu, L. Z. Fan, Synthesis of ZnS/dravite composite and its photocatalytic activity on degradation of methylene blue, Solid State Ionics, 179 (2008) 1387-1390.

DOI: 10.1016/j.ssi.2007.12.011

Google Scholar

[146] H. R. Puretedal, A. Norozi, M. H. Keshararz, A. Semnani, Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes, J. Hazard. Mater., 162 (2009) 674-681.

DOI: 10.1016/j.jhazmat.2008.05.128

Google Scholar

[147] L. Claudia, T. Martinez, R. Kho, I. O. Milan, R. K. Mehra, Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals, J. Colloid Interface Sci., 240 (2001) 525-532.

DOI: 10.1006/jcis.2001.7684

Google Scholar

[148] J. Li, Y. Xu, Y. Liu, D. Wu, Y. Sun, Synthesis of hydrophilic ZnS nanocrystals and their application in photocatalytic degradation of dye pollutants, China Particuology, 2 (2004) 266-269.

DOI: 10.1016/s1672-2515(07)60072-4

Google Scholar

[149] L. Ge, Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange, J. Mol. Catal. A : Chem., 282 (2008) 62-66.

DOI: 10.1016/j.molcata.2007.11.017

Google Scholar

[150] L. C. Chen, Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone, Water Res., 34 (2000) 974-982.

DOI: 10.1016/s0043-1354(99)00188-8

Google Scholar

[151] J. Chen, M. Liu, J. Zhang, Y. Xian, L. Jin, Electrochemical degradation of bromopyrogallol red in presence of cobalt ions, Chemosphere, 59 (2003) 1131-1136.

DOI: 10.1016/s0045-6535(03)00581-2

Google Scholar

[152] P. Verma , V. Shah, P. Baldrian, Decolorization of synthetic dyes using a copper complex with glucaric acid, Chemosphere, 54 (2004) 291-295.

DOI: 10.1016/j.chemosphere.2003.07.006

Google Scholar

[153] N. Talebian, M. R. Nilforoushan, Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue, Thin Solid Films, 518 (2010) 2210-2215.

DOI: 10.1016/j.tsf.2009.07.135

Google Scholar

[154] S. Papic, N. Koprivanac, A. L. Bozic, Advanced oxidation processes in azo dye wastewater treatment, Water Environ. Res., 78 (2006) 572-579.

DOI: 10.2175/106143006x101665

Google Scholar

[155] I. Poulis, E. Micropoulou, R. Panou, E. Kostopolou, Photooxidation of eosin Y in the presence of semiconducting oxides, Appl. Catal., 41 (2003) 345-355.

DOI: 10.1016/s0926-3373(02)00160-1

Google Scholar

[156] M. A. Behnajady, N. Modirshala, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. acid yellow 23 by ZnO photocatalyst, J. Hazard. Mater., 133 (2006) 226-232.

DOI: 10.1016/j.jhazmat.2005.10.022

Google Scholar

[157] S. Bilgi, C. Demir, Identification of photooxidation degradation products of C.I. reactive orange 16 dye by gas chromatography–mass spectrometry, Dyes Pigments, 66 (2005) 69-76.

DOI: 10.1016/j.dyepig.2004.08.007

Google Scholar

[158] L. Andronic, A. Duta, TiO2 thin films for dyes photodegradation, Thin Solid Films, 515(16) (2007) 6294-6297.

DOI: 10.1016/j.tsf.2006.11.150

Google Scholar

[159] M. Liu, X. Z. Li, J. C. Zhao, H. Hidaka, N. Serpone, Photooxidation pathway of sulforhodamine-B. dependence on the adsorption mode on TiO2 exposed to visible light radiation, Environ. Sci. Technol., 34 (2000) 3982-3990.

DOI: 10.1021/es001064c

Google Scholar

[160] J. C. Xu, Y. L. Shi, J. -E. Huang, B. Wang, H. L. Li, Doping metal ions only onto the catalyst surface, J. Mol. Catal. A, 219 (2004) 351-355.

DOI: 10.1016/j.molcata.2004.05.018

Google Scholar

[161] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, J. Hazard. Mater., 155 (2008) 572-579.

DOI: 10.1016/j.jhazmat.2007.11.106

Google Scholar

[162] N. N. Binitha, Z. Yaakob, M. R. Reshmi, S. Sugunan, V. K. Ambili, A. A. Zetty, Preparation and characterization of nano silver-doped mesoporous titania photocatalysts for dye degradation, Catal. Today, 147 (2009) 76-80.

DOI: 10.1016/j.cattod.2009.07.014

Google Scholar

[163] M. H. Habibi, A. Hassanzadeh, S. Madhvi, The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions, J. Photochem. Photobiol., 172A (2005) 89-96.

DOI: 10.1016/j.jphotochem.2004.11.009

Google Scholar

[164] J. Wang, T. Ma, Z. Zhang, X. Zhang , Y. Jiang, Z. Pan, F. Wen, P. Kang, P. Zhang, Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO2 powders and comparison of their sonocatalytic activities, Desalination, 195 (2006).

DOI: 10.1016/j.desal.2005.12.007

Google Scholar

[165] Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res., 40 (2006) 1119-1126.

DOI: 10.1016/j.watres.2005.12.042

Google Scholar

[166] C. Su, B. Y. Hong, C. M. Tseng, Sol–gel preparation and photocatalysis of titanium dioxide, Catal. Today, 96 (2004) 119-126.

DOI: 10.1016/j.cattod.2004.06.132

Google Scholar

[167] K. Y. Jung, S. B. Park, M. Anpo, Photoluminescence and photoactivity of titania particles prepared by the sol–gel technique: Effect of calcination temperature, J. Photochem. Photobiol., 170A (2004) 247-252.

DOI: 10.1016/j.jphotochem.2004.09.003

Google Scholar

[168] H. Yang, K. Zhang, R. Shi, X. Li, X. Dong, Y. Yu, Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions, J. Alloy Comp., 413 (2006) 302-306.

DOI: 10.1016/j.jallcom.2005.06.061

Google Scholar

[169] D. Wang, J. Zhang, Q. Luo, X. Li, Y. Duan, J. An, Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light, J. Hazard. Mater., 169 (2009) 546-550.

DOI: 10.1016/j.jhazmat.2009.03.135

Google Scholar

[170] B. Tian, J. Zhang, T. Tong, F. Chen, Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange, Appl. Catal. B, Environ., 79 (2008) 394-401.

DOI: 10.1016/j.apcatb.2007.11.001

Google Scholar

[171] T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene, Appl. Catal, A. Gen, 244 (2003) 383-391.

DOI: 10.1016/s0926-860x(02)00610-5

Google Scholar

[172] S. Bakardjiieva, J. Subrt, V. Stengl, M. J. Dianez, M. J. Sayagues, Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase, Appl. Catal. B. Environ., 58 (2005) 193-202.

DOI: 10.1016/j.apcatb.2004.06.019

Google Scholar

[173] L. Cui, Y. Wang, M. Niu, G. Chen and Y. Cheng, Synthesis and visible light photocatalysis of Fe-doped TiO2 mesoporous layers deposited on hollow glass microbeads, J. Solid State Chem., (2009).

DOI: 10.1016/j.jssc.2009.07.045

Google Scholar

[174] J. Wang, B. Guo, X. Zhang, Z. Zhang, J. Han, J. Wu, Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase, Ultrasonics Sonochem., 12 (2005) 331-337.

DOI: 10.1016/j.ultsonch.2004.05.002

Google Scholar

[175] N. J. B. Perez, M. F. S. Herrera, Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst, Ultrasonics Sonochem., 14 (2007) 589-595.

DOI: 10.1016/j.ultsonch.2006.09.011

Google Scholar

[176] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. M. Baltork, H. Salavati, Sonochemical and visible light induced photochemical and sonophotochemical degradation of dyes catalyzed by recoverable vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles, Ultrasonics Sonochem., 15 (2008).

DOI: 10.1016/j.ultsonch.2007.10.008

Google Scholar

[177] Z. Zhang, Y. Yuan, L. Liang, Y. Fang, Y. Cheng, H. Ding, G. Shi, L. Jin, Sonophotoelectrocatalytic degradation of azo dye on TiO2 nanotube electrode, Ultrasonics Sonochem., 15 (2008) 370-375.

DOI: 10.1016/j.ultsonch.2007.09.017

Google Scholar

[178] H. Wang, J. Niu, X. Long, Y. He, Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions, Ultrasonics Sonochem., 15 (2008) 386-392.

DOI: 10.1016/j.ultsonch.2007.09.011

Google Scholar

[179] P. Reddy, L. Davydov, P. Smirniotis, TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: The role of the support, Appl. Catal. B. Environ., 42 (2003) 1-11.

DOI: 10.1016/s0926-3373(02)00192-3

Google Scholar

[180] M. Mrowetz, C. Pirola, E. Selli, Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2, Ultrasonics Sonochem., 10 (2003) 247-254.

DOI: 10.1016/s1350-4177(03)00090-7

Google Scholar

[181] S. Gonzalez, S. S. Martinez, Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors, Ultrasonics Sonochem., 15 (2008) 1038-1042.

DOI: 10.1016/j.ultsonch.2008.03.008

Google Scholar

[182] F. Magalhaes, R. M. Lago, Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes, Solar Energy, 83 (2009) 1521-1526.

DOI: 10.1016/j.solener.2009.04.005

Google Scholar

[183] F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun, B. Xue, Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral, J. Hazard. Mater., 152 (2008) 1037-1044.

DOI: 10.1016/j.jhazmat.2007.07.114

Google Scholar

[184] N. Dubey, S. S. Rayalu, N. K. Labhsetwar, R. R. Naidu, R. V. Chatti, S. Devotta, Photocatalytic properties of zeolite-based materials for the photoreduction of methyl orange, Appl. Catal., A. Gen., 303 (2006) 152-157.

DOI: 10.1016/j.apcata.2006.01.043

Google Scholar

[185] I. B. Ditta, A. Steele, C. Liptrot, J. Tobin, H. Tyler, H. M. Yates, D. W. Sheel, H. A. Foster, Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4, Appl. Microbiol. Biotechnol., 79 (2008).

DOI: 10.1007/s00253-008-1411-8

Google Scholar

[186] H. Kisch, W. Macyk, Visible-light photocatalysis by modified titania, Chem. Phys. Chem., 3 (2002) 399-400.

DOI: 10.1002/1439-7641(20020517)3:5<399::aid-cphc399>3.0.co;2-h

Google Scholar

[187] M. Anpo, Applications of titanium oxide photocatalysts and unique second-generation TiO2 photocatalysts able to operate under visible light irradiation for the reduction of environmental toxins on a global scale, Stud. Surf. Sci. Catal., 130A (2000).

DOI: 10.1016/s0167-2991(00)80952-0

Google Scholar

[188] S. Sakthivel, M. V. Shanker, M. Palanichamy, B. Arbindoo, V. Murugesan, Photocatalytic decomposition of leather dye - Comparative study of TiO2 supported on alumina and glass beads, J. Photochem. Photobiol., 148A (2002) 153-159.

Google Scholar

[189] G. Shchubin, R. A. Caruso, Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration, Chem. Mater., 16 (2004) 2287-2292.

DOI: 10.1021/cm0497780

Google Scholar

[190] M. A. Carreon, S. Y. Choi, M. Mamak, N. Chopra, G. A. Ozin, Pore architecture affects photocatalytic activity of periodic mesoporous nanocrystalline anatase thin films, J. Mater. Chem., 17 (2007) 82-89.

DOI: 10.1039/b612550f

Google Scholar

[191] M. Wu, B. Huang, M. Wang, A. Osaka, Titania nanoflowers with high photocatalytic activity, J. Am. Ceramic Soc., 89 (2006) 2660-2663.

DOI: 10.1111/j.1551-2916.2006.01104.x

Google Scholar

[192] G. Balasubramaniam, D. D. Dionysiou, M. T. Suidan, I. Baudin, J. M. Laine, Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water, Appl. Catal., 47B (2004) 73-84.

DOI: 10.1016/j.apcatb.2003.04.002

Google Scholar

[193] S. Bhatkhande, V. G. Pangarkar, A. A. C. M. Beenackers, Photocatalytic degradation for environmental applications: A review, J. Chem. Technol. Biotechnol., 77 (2001) 102-116.

DOI: 10.1002/jctb.532

Google Scholar

[194] S. H. Kim, S. Y. Kwak, T. Suzuki, Photocatalytic degradation of flexible PVC/TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC, Polymer, 47 (2006) 3005-3016.

DOI: 10.1016/j.polymer.2006.03.015

Google Scholar

[195] L. Zan, L. Tian, Z. Liu, Z. Peng, A new polystyrene–TiO2 nanocomposite film and its photocatalytic degradation, Appl. Catal., 264 A (2004) 237-242.

DOI: 10.1016/j.apcata.2003.12.046

Google Scholar

[196] A. Carlos, K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, R. Zamora, Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO, Chemosphere, 40 (2000) 427-432.

DOI: 10.1016/s0045-6535(99)00312-4

Google Scholar

[197] Z. Meng and Z. Juan, Wastewater treatment by photocatalytic oxidation of nano-ZnO, Global Environ. Policy in Japan, 12 (2008) 1-9.

Google Scholar

[198] H. L. Liu, T. C. K. Yang, Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light, Process Biochem., 39 (2003) 475-481.

DOI: 10.1016/s0032-9592(03)00084-0

Google Scholar

[199] R. Cai, K. Hashimoto, K. Itoh, Y. Kubota, A. Fujishima, Photokilling of malignant cells with ultrafine TiO2 powder, Bull. Chem. Soc. Japan, 64 (1991) 1268-1273.

DOI: 10.1246/bcsj.64.1268

Google Scholar

[200] M. C. Yeber, J. Rodriguez, J. Freer, N. Duran, H. D. Mansilla, Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO, Chemosphere, 41 (2000) 1193-1197.

DOI: 10.1016/s0045-6535(99)00551-2

Google Scholar

[201] J. Villasenor, N. Duran, H. D. Mansilla, Photocatalyzed mineralization of kraft black liquor on ZnO/Fe2O3 coupled semiconductor, J. Environ. Technol., 23 (2002) 955-959.

DOI: 10.1080/09593332308618366

Google Scholar

[202] S. Jain, S. C. Ameta, Photocatalytic oxidation of arabinose and glucose over cadmium sulphide, Res. J. Chem. Environ., 12 (2008) 61-64.

Google Scholar