Thermal Conductivity of Polymer/Carbon Nanotube Composites

Article Preview

Abstract:

As one of the most important field of current nanoscience, the polymer nanocomposites is a promising and efficient way for new generation materials with high performances and multifunctionalities. The incorporating of nanofillers in a polymer matrix may improve mechanical, thermal, electrical or dielectric properties of the composites. The current paper focuses on the thermal conductivity of polymer/carbon nanotube composites. These last, are considered to be ideal candidates for the development of nanocomposite materials. Clarifying the role of the factors, influencing the properties of the composites, enable us to choose the suitable processing method for obtaining the composites and to improve the different properties of these systems. This article reviews the dependence of thermal conductivity of carbon nanotubes on the tube size and the effect of interface on the equivalent property. The relationship between the thermal conductivity and the nanostructure of composites are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-113

Citation:

Online since:

March 2012

Export:

Price:

[1] M. J. Assael, K. D. Antoniadis, and D. Tzetzis, The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes, Composites Science and Technology, vol. 68, p.3178–3183, (2008).

DOI: 10.1016/j.compscitech.2008.07.019

Google Scholar

[2] K. Yang and M. Gu, Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide, Composites: Part A, vol. 41, p.215–221, (2010).

DOI: 10.1016/j.compositesa.2009.10.019

Google Scholar

[3] R. Sivakumar, S. Guo, T. Nishimura, and Y. Kagawa, Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites, Scripta Materialia, vol. 56, p.265–268, (2007).

DOI: 10.1016/j.scriptamat.2006.10.025

Google Scholar

[4] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, and A. T. Johnson, Carbon nanotube composites for thermal management, Applied Physics Letters, vol. 80, pp.2767-2769, (2002).

DOI: 10.1063/1.1469696

Google Scholar

[5] K. Sanada, Y. Tada, and Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers, Composites: Part A, vol. 40, p.724–730, (2009).

DOI: 10.1016/j.compositesa.2009.02.024

Google Scholar

[6] C. T'Joen, Y. Park, Q. Wang, A. Sommers, X. Han, and A. Jacobi, A review on polymer heat exchangers for HVAC&R applications, International journal of refrigeration, vol. 32, pp.7-3 – 7 7 9, (2009).

DOI: 10.1016/j.ijrefrig.2008.11.008

Google Scholar

[7] E. V. Thompson, Thermal properties, Encyclopedia of polymer science and engineering, vol. 16, pp.711-747, (1989).

Google Scholar

[8] D. M. Price and M. Jarratt, Thermal conductivity of PTFE and PTFE composites, Thermochimica Acta, vol. 392–393, p.231–236, (2002).

DOI: 10.1016/s0040-6031(02)00105-3

Google Scholar

[9] C. Zhong, Q. Yang, and W. Wang, Correlation and prediction of the thermal conductivity of amorphous polymers, Fluid Phase Equilibria, vol. 181, p.195–202, (2001).

DOI: 10.1016/s0378-3812(01)00492-7

Google Scholar

[10] Z. Han and A. Fina, Thermal conductivityofcarbonnanotubesandtheirpolymer nanocomposites: Areview, Progress inPolymerScience, (2010).

Google Scholar

[11] T. Zhou, X. Wang, X. Liu, and D. Xiong, Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler, C A R B ON, vol. 48, pp.1-1 –1 1 7 6, (2010).

DOI: 10.1016/j.carbon.2009.11.040

Google Scholar

[12] I. Krupa, V. Cecen, R. Tlili, A. Boudenne, and L. Ibos, Thermophysical properties of ethylene–vinylacetate copolymer (EVA) filled with wollastonite fibers coated by silver, European Polymer Journal, vol. 44, p.3817–3826, (2008).

DOI: 10.1016/j.eurpolymj.2008.08.003

Google Scholar

[13] J. -P. Hong, S. -W. Yoon, T. -S. Hwang, Y. -k. Lee, S. -H. Won, and J. -D. Nam, Interphase control of boron nitride/epoxy composites for high thermal conductivity, Korea-Australia Rheology Journal, vol. 22, pp.259-264, (2010).

Google Scholar

[14] S. Yu, P. Hing, and X. Hu, Thermal conductivity of polystrene-aluminum nitride composite, Composites: Part A, vol. 33, pp.289-292, (2002).

DOI: 10.1016/s1359-835x(01)00107-5

Google Scholar

[15] F. P. Incropera and D. P. DeWitt, Fundamentals of heat and mass transfer, (2002).

Google Scholar

[16] Y. Xu and D. D. L. Chung, Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments, Composite Interfaces, vol. 7, pp.243-256, (2000).

DOI: 10.1163/156855400750244969

Google Scholar

[17] Y. Xu, D. D. L. Chung, and C. Mroz, Thermally conducting aluminum nitride polymer-matrix composites, Composites: Part A, vol. 32, pp.1749-1757, (2001).

DOI: 10.1016/s1359-835x(01)00023-9

Google Scholar

[18] Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, European Polymer Journal, vol. 38, p.1887–1897, (2002).

DOI: 10.1016/s0014-3057(02)00064-2

Google Scholar

[19] D. Kumlutas, I. H. Tavman, and M. T. Coban, Thermal conductivity of particle filled polyethylene composite materials, Composites Science and Technology, vol. 63, p.113–117, (2003).

DOI: 10.1016/s0266-3538(02)00194-x

Google Scholar

[20] E. T. Thostenson, Z. Ren, and T. -W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, vol. 61, p.1899–1912, (2001).

DOI: 10.1016/s0266-3538(01)00094-x

Google Scholar

[21] Y. S. Song and J. R. Youn, Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method, Carbon, vol. 44, p.710–717, (2006).

DOI: 10.1016/j.carbon.2005.09.034

Google Scholar

[22] A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu, and M. N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties, International Journal of Solids and Structures, vol. 43, p.6832–6854, (2006).

DOI: 10.1016/j.ijsolstr.2006.02.009

Google Scholar

[23] O. BREUER and U. SUNDARARAJ, Big Returns From Small Fibers: A Review of Polymer/Carbon Nanotube Composites, Polymer Composites, vol. 25, pp.630-641, (2004).

DOI: 10.1002/pc.20058

Google Scholar

[24] F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview, Journal of Composite Materials, vol. 40, pp.1511-1575, (2006).

DOI: 10.1177/0021998306067321

Google Scholar

[25] J. Zhang, M. Tanaka, and T. Matsumoto, A simplified approach for heat conduction analysis of CNT-based nano-composites, Comput. Methods Appl. Mech. Engrg., vol. 193, p.5597–5609, (2004).

DOI: 10.1016/j.cma.2004.06.030

Google Scholar

[26] S. Bal, Influence of dispersion states of carbon nanotubes on mechanical and electrical properties of epoxy nanocomposites, Journal of Scientific and Industrial Research, vol. 66, pp.752-756, (2007).

Google Scholar

[27] S. Rana, R. Alagirusamy, and M. Joshi, A Review on Carbon Epoxy Nanocomposites, Journal of Reinforced Plastics and Composites, vol. 28, pp.461-487, (2009).

DOI: 10.1177/0731684407085417

Google Scholar

[28] R. Khare and S. Bose, Carbon Nanotube Based Composites- A Review, Journal of Minerals & Materials Characterization & Engineering, vol. 4, pp.31-46, (2005).

Google Scholar

[29] Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, vol. 35, pp.357-401, (2010).

DOI: 10.1016/j.progpolymsci.2009.09.003

Google Scholar

[30] M. -F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, SCIENCE, vol. 287, pp.637-640, (2000).

DOI: 10.1126/science.287.5453.637

Google Scholar

[31] V. N. Popov, V. E. V. Doren, and M. Balkanski, Elastic properties of single-walled carbon nanotubes, PHYSICAL REVIEW B, vol. 61, pp.3078-3084, (2000).

DOI: 10.1103/physrevb.61.3078

Google Scholar

[32] R. S. RUOFF and D. C. LORENTS, MECHANICAL AND THERMAL PROPERTIES OF CARBON NANOTUBES, Carbon, vol. 33, pp.925-930, (1995).

DOI: 10.1016/0008-6223(95)00021-5

Google Scholar

[33] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, Measuring the Thermal Conductivity of a Single Carbon Nanotube, PHYSICAL REVIEW LETTERS, vol. 95, pp.1-4, (2005).

DOI: 10.1103/physrevlett.95.065502

Google Scholar

[34] S. Maruyama, A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE.

Google Scholar

[35] P. -C. Ma, N. A. Siddiqui, G. Marom, and J. -K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites: Part A, vol. 41, p.1345–1367, (2010).

DOI: 10.1016/j.compositesa.2010.07.003

Google Scholar

[36] R. H. Baughman, A. A. Zakhidov, and W. A. d. Heer, Carbon Nanotubes—the Route Toward Applications, SCIENCE, vol. 297, pp.787-792, (2002).

DOI: 10.1126/science.1060928

Google Scholar

[37] V. N. Popov, Carbon nanotubes: properties and application, Materials Science and Engineering, vol. 43, p.61–102, (2004).

Google Scholar

[38] M. R. Loos, L. A. F. Coelho, S. H. Pezzin, and S. C. Amico, Effect of Carbon Nanotubes Addition on the Mechanical and Thermal Properties of Epoxy Matrices, Materials Research, vol. 11, pp.347-352, (2008).

DOI: 10.1590/s1516-14392008000300019

Google Scholar

[39] P. J. F. Harris, Carbon nanotube composites, International Materials Reviews, vol. 49, pp.31-43, (2004).

Google Scholar

[40] S. -Y. Yang, C. -C. M. Ma, C. -C. Teng, Y. -W. Huang, S. -H. Liao, Y. -L. Huang, H. -W. Tien, T. -M. Lee, and K. -C. Chiou, Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites, CA R B O N, vol. 48, pp.5-2 –6 0 3, (2010).

DOI: 10.1016/j.carbon.2009.08.047

Google Scholar

[41] R. Andrews and M. C. Weisenberger, Carbon nanotube polymer composites, Current Opinion in Solid State and Materials Science, vol. 8, p.31–37, (2004).

DOI: 10.1016/j.cossms.2003.10.006

Google Scholar

[42] I. V. Singh, M. Tanaka, and M. Endo, Effect of interface on the thermal conductivity of carbon nanotube composites, International Journal of Thermal Sciences, vol. 46, p.842–847, (2007).

DOI: 10.1016/j.ijthermalsci.2006.11.003

Google Scholar

[43] M. Tanaka, I. V. Singh, and M. Endo, Effect of nanotube thickness on the equivalent thermal conductivity of nano-composites, Transaction of JASCOME, vol. 6, pp.13-16, (2006).

Google Scholar

[44] B. Ascioglu, S. Adanur, L. Gumusel, and H. Bas, Modeling of Transverse Direction Thermal Conductivity in Micro-nano Fiber-reinforced composites, Textile Research Journal, vol. 79, pp.1059-1066, (2009).

DOI: 10.1177/0040517508101624

Google Scholar

[45] W. -T. Hong and N. -H. Tai, Investigations on the thermal conductivity of composites reinforced with carbon nanotubes, Diamond & Related Materials, vol. 17, p.1577–1581, (2008).

DOI: 10.1016/j.diamond.2008.03.037

Google Scholar

[46] Y. Xu, G. Ray, and B. Abdel-Magid, Thermal behavior of single-walled carbon nanotube polymer–matrix composites, Composites: Part A, vol. 37, p.114–121, (2006).

DOI: 10.1016/j.compositesa.2005.04.009

Google Scholar