Novel Photocatalytic Ag/TiO2 Thin Film on Polyvinyl Chloride for Gaseous BTEX Treatment

Article Preview

Abstract:

This study aims to provide the photocatalytic approach for treatment of some hazard air pollutants such as benzene, toluene, ethylbenzene and xylene (BTEX) under visible light. Silver doped titanium dioxide (Ag/TiO2) thin films with various molar ratios (0.01, 0.05, 0.1 and 0.2 mol) were synthesized via sol-gel method and dipped on polyvinyl chloride (PVC) sheet before curing with UV lamp. The X-ray diffractograms showed the composite of TiO2 anatase and nanosilver. The effect of silver doping on decreasing of band gap energy of TiO2 was observed from the absorption edge shift to higher wave length, analyzed by UV-visible spectrometer. The results from hydrophilicity test indicated that hydrophilicity of TiO2 thin film was increased by doping silver. The morphology of the Ag/TiO2 thin film studied by Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer revealed well dispersed nanosilver on the smooth thin film. The BTEX degradation was carried out in a batch reactor with the initial concentration of mixed BTEX gas [25 ppm]. The remaining BTEX was examined by Gas Chromatography equipped with flame ionization detector. Among Ag/TiO2 thin films, the 0.1 Ag/TiO2 thin films exhibited the best performance for gaseous BTEX degradation under visible light. The maximum degradation efficiency was belong to xylene (89%), followed by ethylbenzene (86%), toluene (83%) and benzene (79%).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-145

Citation:

Online since:

February 2012

Export:

Price:

[1] S. A. Edgerton, M. W. Holdren, D. L. Smith, Inter-urban comparison of ambient volatile organic compound concentrations in US cities. J. Air Pollut. Cont. Assoc. 39 (1989) 729–732.

DOI: 10.1080/08940630.1989.10466561

Google Scholar

[2] C. W. Sweet, S. J. Vermette, Toxic volatile organic compounds in urban air in Illinois, Environ. Sci. Technol. 26 (1992) 165.

DOI: 10.1021/es00025a020

Google Scholar

[3] R. Kostiainen, Volatile organic compounds in the indoor air of normal and sick houses. Atmos. Environ. 29 (1995) 693–702.

DOI: 10.1016/1352-2310(94)00309-9

Google Scholar

[4] R. Mukund, J. Thomas, Kelly and W. Chester Source Attribution of Ambient Air Toxic and Other VOCs in Columbus, OHIO, Atmos. Environ. 30 (1996) 3457- 3470.

DOI: 10.1016/1352-2310(95)00487-4

Google Scholar

[5] R. M. Alberici, W. E. Jardim, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl Catal B Environ. 14 (1997) 55–68.

DOI: 10.1016/s0926-3373(97)00012-x

Google Scholar

[6] H. Guo, S. C. Lee , W. M. Li, J. J. Cao , Source characterization of BTEX in indoor microenvironments in Hong Kong, Atmos. Environ. 37 (2003) 73-82.

DOI: 10.1016/s1352-2310(02)00724-0

Google Scholar

[7] B. J. Finlayson-Pitts, J. N. Pitts Jr., Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science. 276 (1997) 1045–1052.

DOI: 10.1126/science.276.5315.1045

Google Scholar

[8] A. Monod, B. C. Sive, P. Avino , T. Chen, D. R. Blake , F. S. Rowland, Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene, Atmos. Environ. 35 (2001).

DOI: 10.1016/s1352-2310(00)00274-0

Google Scholar

[9] Convertino, G. Leo, M. Striccoli, G. Di Marco, M.L. Curri, Effect of shape and surface chemistry of TiO2 colloidal nanocrystals on the organic vapor absorption capacity of TiO2/PMMA composite, Polymer. 49 (2008) 5526-5532.

DOI: 10.1016/j.polymer.2008.09.069

Google Scholar

[10] L. Chen, M.E. Graham, G. Gentner, D.R. Li, N.M. Dimitrijevic, K.A. Gray, Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition, Thin Solid Films. 517 (2009) 5641-5645.

DOI: 10.1016/j.tsf.2009.02.075

Google Scholar

[11] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci Rep. 63 (2008) 515–82.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[12] Q.I. Min, Yang Dayi, ZHANG Jingying, A. l. Hongjun, Preparation and Characterization of Zn-containing Hydroxyapatite/TiO2 Composite Coating on Ti alloys, Mater. Sci. 685 (2011) 367-370.

Google Scholar

[13] H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, Y.C. Bae, Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, J. Photochem. Photobiol. A: Chem. 163 (2004) 37-44.

DOI: 10.1016/s1010-6030(03)00428-3

Google Scholar

[14] Braconnier, C.A. Pez, S. Lambert , C. Ali , C. Henrist , D. Poelman , J.P. Pirard, R. Cloots, B. Heinrichs, Ag- and SiO2-doped porous TiO2 with enhanced thermal stability, Micro. Meso. Mater. 122 (2009) 247-254.

DOI: 10.1016/j.micromeso.2009.03.007

Google Scholar

[15] X.G. Hou, M.D. Huang, X. L Wu, A.D. Liu, Preparation and studies of photocatalytic silver- loaded TiO2 films by hybrid sol-gel method, Chem. Eng.J. 146 (2009) 42-48.

DOI: 10.1016/j.cej.2008.05.041

Google Scholar

[16] J.A. Rengifo-Herrera, J. Kiwi, C. Pulgarin, N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobio. A. 205 (2009).

DOI: 10.1016/j.jphotochem.2009.04.015

Google Scholar

[17] J. Garcia-Serrano, E. Gmez-Hernndez, M. Ocampo-Fernndez, U. Pal, Effect of Ag doping on the crystallization and phase transition of TiO2 nanoparticles, Current Appl. Phys. 9 (2009) 1097–1105.

DOI: 10.1016/j.cap.2008.12.008

Google Scholar

[18] S. Anandan, P.S. Kumar, N. Pugazhenthiran, J. Madhavan, P. Maruthamuthu, Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88, Sol. Energy Mater. Sol. Cells. 92 (2008) 929-937.

DOI: 10.1016/j.solmat.2008.02.020

Google Scholar

[19] M.H. Zhao, Y. Chen, X. Quan, X.L. Ruan, Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation, Chin. Sci. Bull. 52 (2007) 1456–1461.

DOI: 10.1007/s11434-007-0170-8

Google Scholar

[20] L.X. Yang, D.M. He, Q.Y. Cai, C.A. Grimes, Fabrication and catalytic properties ofCo–Ag–Pt nanoparticle-decorated titania nanotube arrays, J. Phys. Chem C. 111 (2007) 8214– 8217.

DOI: 10.1021/jp067207k

Google Scholar

[21] J.M. Macak, F. Schmidt-Stein, P. Schmuki, Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles, Electrochem. Commun. 9 (2007) 1783–1787.

DOI: 10.1016/j.elecom.2007.04.002

Google Scholar

[22] Paramasivam, J.M. Macak, A. Ghicov, P. Schmuki, Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers, Chem. Phys. Lett. 445 (2007) 233–237.

DOI: 10.1016/j.cplett.2007.07.107

Google Scholar

[23] Chung-Chieh Chang, Jing-Yi Chen, Tzu-Ling Hsu, Chung-Kwei Lin, Chih-Chieh Chan., Photocatalytic properties of porous TiO2/Ag thin films, Thin Solid Films. 516 (2008) 1743–1747.

DOI: 10.1016/j.tsf.2007.05.033

Google Scholar

[24] Y. Zhou, C.Y. Wang, H. J. Liu, Y. R. Zhu, Z. Y. Chen, Preparation and studies of Ag–TiO2 hybrid nanoparticles of core-shell structure, Mater. Sci. Eng. B. 67 (1999) 95–98.

DOI: 10.1016/s0921-5107(99)00316-5

Google Scholar

[25] A. Guillen-Santiagoa, S. A. Mayena, G. Torres-Delgadoa, R. Castanedo-Pereza, A. Maldonadob, M. de la , L. Olverab, Photocatalytic degradation of methylene blue using undoped and Ag- doped TiO2 thin films deposited by a sol–gel process: Effect of the ageing time of the starting solution and the film thickness, Mater. Sci. Eng. B. 174 (2010).

DOI: 10.1016/j.mseb.2010.03.009

Google Scholar

[26] Fanming Meng , Zhaoqi Sun, A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering, Appl. Surf. Sci. 255 (2009) 6715–6720.

DOI: 10.1016/j.apsusc.2009.02.076

Google Scholar

[27] J. Kirchnerova , M.L.H. Cohen, C. Guy, D. Klvana, Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25). Appl. Catal. A – General. 282 (2005) 321–332.

DOI: 10.1016/j.apcata.2004.12.045

Google Scholar

[28] F. Breme, J. Buttstaedt, G. Emig , Coating of polymers with titanium-based layers by a novel plasma-assisted chemical vapor deposition process, Thin Solid Films. 377-378 (2000) 755-759.

DOI: 10.1016/s0040-6090(00)01329-8

Google Scholar

[29] Jae-Hun Yang, Yang-Su Han, Jin-Ho Choy, TiO2 thin-films on polymer substrates and their photocatalytic activity , Thin Solid Films. 495 (2006) 266 – 271.

DOI: 10.1016/j.tsf.2005.08.195

Google Scholar

[30] L. Hong, Z. Gaoling, S. Bin,H. Gaorong, Effect of Incorporation of Silver on the Electrical Properties of Sol-Gel-Derived Titania Film, Chem. Commun. 19 (2008) 667-673.

Google Scholar

[31] Jie Deng, Jie Tao, Xiaoli Liu, Tao Wu, Lower-temperature Preparation and photoelectrochemical Properties of Anatase TiO2 Sol, Mater. Sci. 685 (2011). 87-97.

DOI: 10.4028/www.scientific.net/msf.685.87

Google Scholar

[32] ASTM F22 – 02, Standard Test Method for Hydrophobic Surface Films by the Water-Break Test, American Society for Testing of Materials, New York, USA, (2007).

Google Scholar

[33] Lan Suna, Jing Li, ChenglinWang, Sifang Li, Yuekun Lai , Hongbo Chen, Changjian Lin, Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity, J. Hazard. Mater. 171 (2009) 1045–1050.

DOI: 10.1016/j.jhazmat.2009.06.115

Google Scholar

[34] J. He, I. Ichinose, T. Kunitake, A. Nakao, In situ synthesis of nobel metal nanoparticles in ultrathin TiO2–gel films by a combination of ion-exchange and reduction processes, Langmuir. 18 (2002) 10005-10010.

DOI: 10.1021/la0260584

Google Scholar

[35] Xingwang Zhang, Minghua Zhou, Lecheng Lei, Preparation of an Ag–TiO2 photocatalyst coated on activated carbon by MOCVD, Mater. Chem. Phys. 91 (2005) 73–79.

DOI: 10.1016/j.matchemphys.2004.10.058

Google Scholar

[36] J. Yu, X. Zhao, and Q. Zho, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method, Mater. Chem. Phys. 69 (2001) 25-29.

DOI: 10.1016/s0254-0584(00)00291-1

Google Scholar

[37] S. Rengaraj, X.Z. Li , Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2, 4, 6-trichlorophenol in aqueous suspension, J. Mole. Catal. A: Chem. 243 (2006) 60–67.

DOI: 10.1016/j.molcata.2005.08.010

Google Scholar

[38] C.H. Ao, S.C. Lee, C.L. Mak, L.Y. Chan, Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO, Appl. Catal. B: Environ. 42 (2003) 119-129.

DOI: 10.1016/s0926-3373(02)00219-9

Google Scholar

[39] W.X. Zhang, Environmental Technologies at the Nanoscale, Environ. Sci. Technol. (2003) 102-108.

Google Scholar