Magnetic Phase Diagram of the Ferromagnetic Shape Memory Alloys Ni2MnGa1-xCux

Article Preview

Abstract:

X-ray powder diffraction, permeability, magnetization and differential scanning calorimetry measurements were carried out on the magnetic shape memory alloys Ni2MnGa1−xCux (0 ≤ x ≤ 0.25). On the basis of the experimental results, the phase diagram in the temperature– concentration plane was determined for this alloy system. The determined phase diagram is spanned by the paramagnetic austenite phase (Para-A), paramagnetic martensite phase (Para-M), ferromagnetic austenite phase (Ferro-A), ferromagnetic martensite phase (Ferro-M) and the premartensite phase. It was found that the magnetostructural transition between the phases Para-A and Ferro-M can occur in the concentration region 0.12 < x ≤ 0.14 and that Ni2MnGa1−xCux has the characteristics of the phase diagram similar to those of the phase diagrams of Ni2+xMn1−xGa and Ni2Mn1−xCuxGa. In order to understand the phase diagram, the phenomenological free energy as a function of the martensitic distortion and magnetization was constructed and analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-176

Citation:

Online since:

May 2011

Export:

Price:

[1] P. J. Brown, T. Kanomata, M. Matsumoto, K. -U. Neumann and K. R. A. Ziebeck, in: Magnetism and Structure in Functional Materials, edited by A. Planes, L. Mańosa and A. Saxena (Springer-Verlag Berlin Heidelberg 2005).

Google Scholar

[2] K. Ullakko, J. K. Huang, C. Kantner, R.C. O'Handley and V.V. Kokorin: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

Google Scholar

[3] P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K. -U. Neumann, B. Ouladdiaf and K. R. A. Ziebeck: J. Phys.: Condens. Matter Vol. 14 (2002), p.10159.

DOI: 10.1088/0953-8984/14/43/313

Google Scholar

[4] F. X. Hu, B. G. Shen and J. R. Sun: Appl. Phys. Lett. Vol. 76 (2000), p.3460.

Google Scholar

[5] F. X. Hu, B. G. Shen, J. R. Sun and G. H. Wu: Phys. Rev. B Vol. 64 (2001), p.132412.

Google Scholar

[6] F. X. Hu, J. R. Sun, G. H. Wu and B. G. Shen: J. Appl. Phys. Vol. 90 (2001), p.5216.

Google Scholar

[7] J. Marcos, L. Manõsa, A. Planes, F. Casanova, X. Batlle, A. Labarta and B. Matínez: J. Phys. IV Vol. 115 (2004), p.105.

DOI: 10.1051/jp4:2004115013

Google Scholar

[8] L. Pareti, M. Solzi, F. Albertini and A. Paoluzi: Eur. Phys. J. B Vol. 32 (2003), p.303.

Google Scholar

[9] V. V. Khovailo, K. Oikawa, T. Abe and T. Takagi: J. Appl. Phys. Vol. 93 (2003), p.8483.

Google Scholar

[10] A. A. Cherechukin, T. Takagi, M. Matsumoto and V. D. Buchel'nikov: Phys. Lett. A Vol. 326 (2004), p.146.

Google Scholar

[11] F. Albertini, F. Canepa, S. Cirafici, E. A. Franceschi, M. Napoletano, A. Paoluzi, L. Pareti and M. Solzi: J. Magn. Magn. Mater. Vol. 272-276 (2004), p.2111.

DOI: 10.1016/j.jmmm.2003.12.883

Google Scholar

[12] A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V. Khovailo, V. Koledov, R. Levitin, V. Shavrov and T. Takagi: J. Magn. Magn. Mater. Vol. 272-276 (2004), p. (2040).

DOI: 10.1016/j.jmmm.2003.12.1363

Google Scholar

[13] M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso and D. Schlagel: Phys. Rev. B Vol. 72 (2005), p.094435.

Google Scholar

[14] F. Albertini, M. Solzi, A. Paoluzi and L. Righi: Mater. Sci. Forum Vol. 583 (2008), p.169.

Google Scholar

[15] A. N. Vasil'ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi and J. Tani: Phys. Rev. B Vol. 59 (1999), p.1113.

Google Scholar

[16] V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev and A. N. Vasiliev: Phys. Rev. B Vol. 72 (2005), p.224408.

Google Scholar

[17] S. Fujieda, A. Fujita and K. Fukamichi: Appl. Phys. Lett. Vol. 81 (2002), p.1276.

Google Scholar

[18] X. B. Liu and Z. Altounian: J. Magn. Magn. Mater. Vol. 264 (2003), p.209.

Google Scholar

[19] M. Kataoka, K. Endo, N. Kudo, T. Kanomata, H. Nishihara, T. Shishido, M. Nagasako, R. Y. Umetsu and R. Kainuma: Phys. Rev. B Vol. 82 (2010), p.214423.

Google Scholar

[20] S. Stadler, M. Khan, J. Mitchell, N. Ali, A. M. Gomes, I. Dubenko, A. Y. Takeuchi and A. P. Guimarães: Appl. Phys. Lett. Vol. 88 (2006), p.192511.

DOI: 10.1063/1.2202751

Google Scholar

[21] A. M. Gomes, M. Khan, S. Stadler, N. Ali, I. Dubenko, A. Y. Takeuchi and A. P. Guimarães: J. Appl. Phys. Vol. 99 (2006), p. 08Q106.

Google Scholar

[22] M. Khan, I. Dubenko, S. Stadler and N. Ali: J. Appl. Phys. Vol. 102 (2007), p.023901.

Google Scholar

[23] M. Khan, S. Stadler and N. Ali: J. Appl. Phys. Vol. 101 (2007), p. 09C515.

Google Scholar

[24] J. F. Duan, Y. Long, B. Bao, H. Zhang, R. C. Ye, Y. Q. Chang, F. R. Wan and G. H. Wu: J. Appl. Phys. Vol. 103 (2008), p.063911.

Google Scholar

[25] B. R. Gautam, I. Dubenko, J. C. Mabon, S. Stadler and N. Ali: J. Alloys Compd. Vol. 472 (2009), p.35.

Google Scholar

[26] C. Jiang, J. Wang, P. Li, A. Jia and H. Xu: Appl. Phys. Lett. Vol. 95 (2009), p.012501.

Google Scholar