Statistics for Quantifying the Mechanical Properties of Nanomaterials

Article Preview

Abstract:

In the paper, the up-to-date advances in the statistical analysis of nano-mechanical measurements are briefly reviewed. It is shown that, by means of statistical methods such as a minimum information criterion, a better statistical model can be selected for quantifying the intrinsic mechanical properties of nanomaterials or extracting the optimal information from those imperfect experimental data obtained with recently available nano-mechanical testing techniques.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1578-1581

Citation:

Online since:

June 2010

Authors:

Export:

Price:

[1] A.A. Griffith: Philos. Trans. R. Soc. London A Vol. 221, (1920), p.163.

Google Scholar

[2] H. Gao, B.H. Ji, I.L. Jager, E. Arzt and P. Fratzl: Proc. Natl. Acad. Sci. USA Vol. 100, (2003), p.5597.

Google Scholar

[3] W. Weibull: J. Appl. Mech. -Trans. ASME Vol. 18, (1951), p.293.

Google Scholar

[4] N.M. Pugno and R.S. Ruoff: Philos. Mag. Vol. 84, (2004), p.2829.

Google Scholar

[5] N.M. Pugno and R.S. Ruoff: J. Appl. Phys. Vol. 99, (2006), 024301.

Google Scholar

[6] C. Lu: Appl. Phys. Lett. Vol. 92, (2008), 206101.

Google Scholar

[7] C. Lu, R. Danzer and F.D. Fischer: Phys. Rev. E Vol. 65, (2002), 067102.

Google Scholar

[8] X. Deng, V.R. Joseph, W. Mai, Z.L. Wang and C.F.J. Wu: Proc. Natl. Acad. Sci. USA Vol. 106, (2009), p.11845.

Google Scholar

[9] Z.P. Bažant and S.D. Pang: Proc. Natl. Acad. Sci. USA Vol. 103, (2006), p.9434.

Google Scholar

[10] E.J. Gumbel: Statistics of Extremes (Columbia University Press, New York, 1958).

Google Scholar

[11] E. Limpert, W.A. Stahel and M. Abbt: BioScience Vol. 51, (2001), p.341.

Google Scholar

[12] A. Carpinteri and N. Pugno: Nat. Mater. Vol. 4, (2005), p.421.

Google Scholar

[13] C. Lu: Phys. Lett. A Vol. 372, (2008), p.6113.

Google Scholar

[14] H. Akaike: IEEE Trans. Autom. Control Vol. 19, (1974), p.716.

Google Scholar

[15] E.W. Wong, P.E. Sheehan and C.M. Lieber: Science Vol. 277, (1997), p. (1971).

Google Scholar

[16] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff: Science Vol. 287, (2000), p.637.

Google Scholar

[17] A.H. Barber, R. Andrews, L.S. Schadler and H.D. Wagner: Appl. Phys. Lett. Vol. 87, (2005), 203106.

Google Scholar

[18] M. Yang, V. Koutsos and M. Zaiser: Nanotechnology Vol. 18, (2007), 155708.

Google Scholar

[19] C.Q. Chen and J. Zhu: Appl. Phys. Lett. Vol. 90, (2007), 043105.

Google Scholar

[20] I. Szlufarska, A. Nakano and P. Vashishta: Science Vol. 309, (2005), p.911.

Google Scholar

[21] C. Lu, Y. -W. Mai and Y.G. Shen, J. Mater. Sci. Vol. 41, (2006), p.937.

Google Scholar

[22] Y.G. Zheng, C. Lu, Y. -W. Mai, Y.X. Gu, H.W. Zhang and Z. Chen: Appl. Phys. Lett. Vol. 88, (2006), 144104.

Google Scholar

[23] C. Lu, Y.H. Lu, Y.G. Shen and Y. -W. Mai: Philos. Mag. Lett. Vol. 88, (2008), p.829.

Google Scholar

[24] S. Gheorghiu and M.O. Coppens: Proc. Natl. Acad. Sci. USA Vol. 101, (2004), p.15852.

Google Scholar

[25] C. Lu, Y. -W. Mai and Y.G. Shen: Phys. Rev. E Vol. 72, (2005), 027101.

Google Scholar