Unconventional Glow Discharge Nitriding of 316L Austenitic Steel

Article Preview

Abstract:

This work presents the results of investigations of unconventionally glow-discharge nitrided 316L austenitic steel. The process of nitriding was performed using a variety of variants of sample orientation in glow-discharge chamber. The samples subject to nitriding were located directly on cathode, on the surface isolated from both cathode and anode, in so-called ‘plasma potential’, while the part of the samples with this orientation were additionally covered with screens to supported nitriding process. In order to evaluate the efficiency of various variants of nitriding, the following investigations were conducted: hardness test, element distribution profile within surface layer, metallographic tests, tribological and corrosion resistance tests.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

882-887

Citation:

Online since:

January 2010

Export:

Price:

[1] M. Jurczyk, J. Jakubowicz: Bionanomateriały (Bionanomaterials). Wydawnictwo Politechniki Poznańskiej, Poznań (2008).

Google Scholar

[2] S. Kannan, A. Balamurugan, S. Rajeswari: Electrochemical characterization of hydroxyapatite coatings on HNO3 passivated 316L SS for implant applications. Electrochimica Acta 50 (2005) p.2065-(2072).

DOI: 10.1016/j.electacta.2004.09.015

Google Scholar

[3] M. Blicharski: Inżynieria Materiałowa Stal. (Steel Material Engineering)WNT, Warsaw (2004).

Google Scholar

[4] X.M. Zhu, M.K. Lei: Surface engineering of biomedical metallic materials by plasma-based low-energy ion implantation. Current Applied Physics 5 (2005), p.522÷525.

DOI: 10.1016/j.cap.2005.01.018

Google Scholar

[5] J. Geringer, B. Forest, P. Combrade: Wear analysis of materials used as orthopaedic implants. Wear 261 (2006), pp.971-979.

DOI: 10.1016/j.wear.2006.03.022

Google Scholar

[6] T. Hryniewicz, R. Rokicki, K. Rokosz: Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field. Surface & Coatings Technology 202 (2008), pp.1668-1673.

DOI: 10.1016/j.surfcoat.2007.07.067

Google Scholar

[7] X. Wang, K.M. Lei, J.S. Zhang: Surface modification of 316L stainless steel with high-intensity pulsed ion beams. Surface & Coatings Technology 201 (2007), pp.5884-5890.

DOI: 10.1016/j.surfcoat.2006.10.040

Google Scholar

[8] W. Serwiński, A. Zieliński: Obróbka powierzchniowa nierdzewnej stali austenitycznej (Surface Treatment of Stainless Austenitic Steel). Inżynieria Materiałowa No. 5 (2002), p.263÷266.

Google Scholar

[9] J. Baranowska, W. Serwiński, A. Zieliński: Obróbka powierzchniowa nierdzewnej stali austenitycznej. Inżynieria Materiałowa (Surface Treatment of Stainless Austenitic Steel. Material Engineering) No. 5 (1999), p.279÷2281.

Google Scholar

[10] T. Frączek, M. Olejnik: Znaczenie rozpylania katodowego w procesie azotowania jarzeniowego stali austenitycznych. Nowe technologie i osiągnięcia w metalurgii i inżynierii Materiałowej (Importance of Cathode Sputtering During the Process of Glow Discharge !itriding of Austenitic Steel. !ew Technologies and Achievements in Metallurgy and Material Engineering), Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2008, pp.85-88.

Google Scholar

[11] J. Michalski: Journal of Materials Science Letters, 19, (2000), pp.1411-1414.

Google Scholar

[12] T. Frączek, J. Michalski: Rola potencjału plazmy w warunkach wyładowania jarzeniowego prądu stałego w procesie azotowania stali EJ96 (The Role of Plasma Potential for Condition of Direct Current Glow Discharge During the Process of Steel !itriding), Inżynieria Materiałowa, (2002).

Google Scholar

[13] M. Tsujikawa, N. Yamauchi, U. Ueda, T. Sone, Y. Hirose: Behavior of carbon in low temperature plasma nitriding layer of austenitic stainless steel. Surface & Coatings Technology 193 (2005). pp.309-313.

DOI: 10.1016/j.surfcoat.2004.08.179

Google Scholar

[14] M.P.M. Fewell, D.R.G. Mitchell J.M. Priest, K.T. Short, G.A. Collins: The nature of expanded austenite. Surface and Coatings Technology 131 (2000), pp.300-306.

DOI: 10.1016/s0257-8972(00)00804-5

Google Scholar

[15] L.A. Dobrzański; Podstawy nauki o materiałach i metaloznawstwo (Fundamentals of Material and Metal Sciences). WNT, Warsaw (2002).

Google Scholar