Biodegradable and Bioactive Polymer/Bioglass® Composite Foams for Tissue Engineering Scaffolds

Article Preview

Abstract:

Porous bioresorbable and bioactive composite materials designed for applications as scaffolds in tissue engineering are discussed. The systems fabricated by thermally induced phase separation method and based on poly(D,L-lactide) (PDLLA) or poly(lactic acid-co-glycolic acid) (PLGA) with additions of bioactive glass particles (45S5 Bioglass®) are described in detail. The scaffolds exhibit a well-defined, oriented and interconnected porosity. The porosity structure of foams with and without Bioglass® was characterised by scanning electron microscopy. The in vitro bioactivity and degradability of the composite foams were investigated in contact with phosphate buffer saline (PBS) and simulated body fluid (SBF). High chemical reactivity of scaffolds in SBF, which leads to the prompt formation of bonelike hydroxyapatite crystals on the material surfaces, indicates an enhanced bioactive character of the composites and therefore their potential for use as bone tissue engineering scaffolds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

499-506

Citation:

Online since:

September 2005

Export:

Price:

[1] R. Langer, J. Vacanti: Science, Vol. 260 (1993), p.920.

Google Scholar

[2] L. L. Hench and J. M. Polak: Science, Vol. 295 (2002), p.1014.

Google Scholar

[3] C. M. Agrawal and R. B. Ray: J. Biomed. Mater. Res. 55 (2001), p.141.

Google Scholar

[4] L. G. Griffith: Acta Mat. 48 (2000) p.263.

Google Scholar

[5] V. M. Maquet, R. Jérôme: Mat. Sci. Forum, Vol. 250 (1997), p.15.

Google Scholar

[6] D. W. Hutmacher: Biomaterials 21 (2000), p.2529.

Google Scholar

[7] C. M. Agrawal, K. A. Athanasiou, J. D. Heckman: Mat. Sci. Forum, Vol. 250 (1997), p.115.

Google Scholar

[8] S. Yang, K. -F. Leong, Z. Du, C. -K. Chua: Tissue Eng. 7 (2001), p.679.

Google Scholar

[9] R. C. Thomson, M. J. Yaszemski, A. G. Mikos: pp.263-271 in Principles of Tissue Engineering. Edited by R. P. Lanza, R. Langer and W. L. Chick, (R.G. Landes, Austin, TX, 1997).

Google Scholar

[10] L. L. Hench: J. Am. Ceram. Soc. 81 (1998), p.1705.

Google Scholar

[11] L. L. Hench, R. J. Splinter, W. C. Allen, T. K. Greenlee: J. Biomed. Mater. Res. 2 (1971), p.117.

Google Scholar

[12] A. G. Stamboulis, L. L. Hench, A. R. Boccaccini: J. Mat. Sci.: Mat. Med. 13 (2002), p.843.

Google Scholar

[13] J. A. Roether, A. R. Boccaccini, L. L. Hench, V. Maquet, S. Gautier, R. Jérôme: Biomaterials 23 (2002), p.3871.

DOI: 10.1016/s0142-9612(02)00131-x

Google Scholar

[14] C. T. Laurencin and H. H. Lu: pp.462-472 in Bone Engineering. Edited by J. E. Davies. (em squared incorporated, Toronto, Canada, 2000).

Google Scholar

[15] A. R. Boccaccini, J. A. Roether, L. L. Hench, V. Maquet, R. Jérôme: Ceram. Eng. Sci. Proc. 23 (2002), p.805.

Google Scholar

[16] J. A. Roether, J. E. Gough, A. R. Boccaccini, L. L. Hench, V. Maquet, R. Jérôme: J. Mater. Sci. Mater. Med. 13 (2002), p.1207.

DOI: 10.1023/a:1021166726914

Google Scholar

[17] J. E. Gough, M. Arumugam, J. J. Blaker, A. R. Boccaccini: Matwiss. Werkstofftech. 34 (2003), p.654.

Google Scholar

[18] A. R. Boccaccini, I. Notingher, V. Maquet, R. Jérôme: J. Mat. Sci. Mat. Med. 14 (2003), p.443.

Google Scholar

[19] A. R. Boccaccini and V. Maquet: Comp. Sci. Technol. 63 (2003), p.2417.

Google Scholar

[20] V. Maquet, A. R. Boccaccini, L. Pravata, I. Notingher, R. Jérôme: J. Biomed. Mat. Res. 66A (2003), p.335.

Google Scholar

[21] V. Maquet, A. R. Boccaccini, L. Pravata, I. Nothinger, R. Jérôme: Biomaterials 25 (2004), p.4185.

Google Scholar

[22] R. M. Day, A. R. Boccaccini, V. Maquet, S. Surey, A. Forbes, S. M. Gabe, R. Jerome: J. Mat. Sci. Mat. Med. 15 (2004), p.729.

Google Scholar

[23] S. Verrier, J. J. Blaker, V. M. Maquet, L. L. Hench, A. R. Boccaccini: Biomaterials 25 (2004), p.3013.

DOI: 10.1016/j.biomaterials.2003.09.081

Google Scholar

[24] C. Schugens, V. Maquet, C. Grandfils, R. Jérôme, P. Teyssié: Polymer 37 (1996), p.1027.

Google Scholar

[25] C. Schugens, V. Maquet, C. Grandfils, R. Jérôme, P. Teyssié: J Biomed Mater Res 30 (1996), p.449.

Google Scholar

[26] A. R. Boccaccini, A. Stamboulis, A. Rashid, J. A. Roether: J. Biomed. Mater. Res. B. Applied Biomaterials 67B (2003), p.618.

DOI: 10.1002/jbm.b.10047

Google Scholar

[27] S. Rizzi, D. J. Heath, A. G. A. Coombes, N. Bock, M. Textor, S. Downes: J. Biomed. Mater. Res. 55 (2001), p.475.

DOI: 10.1002/1097-4636(20010615)55:4<475::aid-jbm1039>3.0.co;2-q

Google Scholar

[28] I. D. Xynos, A. J. Edgar, L. D. Buttery, L. L. Hench, J. M. Polak: J. Biomed. Mater. Res. 55 (2001), p.151.

Google Scholar

[29] J. Wilson and D. Nolletti: pp.283-302 in CRC Handbook of Bioactive Ceramics. Vol. 1. Edited by T. Yamamuro, L. L. Hench, J. Wilson (CRC Press, Boca Raton, 1990).

DOI: 10.1002/jbm.820250709

Google Scholar

[30] J. J. Blaker, J. E. Gough, V. M. Maquet, I. Notingher, A. R. Boccaccini: J. Biomed. Mater. Res. 67A (2003), p.1401.

Google Scholar