3D Atom Probe Analysis on Nb and Mo Segregation during Recrystallisation of α-Fe

Article Preview

Abstract:

Atomic-scale interface segregation behaviour of Nb and Mo during different stages of recrystallisation of a-Fe has been investigated using a three-dimensional atom probe (3DAP). Experimental procedures to analyse a specific region of interest in the specimens and to determine an orientation relationship between analysed contiguous grains are briefly described, and then analytical artefacts which may affect the measured solute distribution are discussed. Atom probe analysis reveals that Gibbs free energy of segregation of Nb is larger than that of Mo in a-Fe, implying that a stronger solute Nb-interface interaction can be a reason for the larger retardation effect of recrystallisation by Nb addition. The comparison of measured solute profiles at migrating recrystallisation interfaces with calculated solute profiles show that Cahn’s solute drag model gives a reasonable fit to solute profiles for migrating interfaces.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

949-956

Citation:

Online since:

October 2004

Export:

Price:

[1] K. Lücke and K. Detert: Acta Metall. 5 (1957) 628.

Google Scholar

[2] J.W. Cahn: Acta Metall. 10 (1962) 789.

Google Scholar

[3] M. Hillert: The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals Monograph and Report Series No. 33, p.231 (Institute of Metals, London, 1969).

Google Scholar

[4] G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater. 43 (1995) 3763.

Google Scholar

[5] Z. -K. Liu and J. Ågren: in Proc. Int. Conf. On Martensite Transformations (ed. C. M. Wayman and J. Perkins), p.317, (Montrey Institute of Advanced Studies, Carmel, CA, 1993).

Google Scholar

[6] Z. -K. Liu: Metall. Mater. Trans. A 28A (1997) 1625.

Google Scholar

[7] M. Suehiro, Z. -K. Liu and J. Ågren: Acta Mater. 44 (1996) 4241.

Google Scholar

[8] M. Suehiro: ISIJ Inter. 38 (1998) 547.

Google Scholar

[9] M.K. Miller, A. Cerezo, M.G. Hetherington and G.D.W. Smith: Atom Probe Field-Ion Microscopy (Oxford University Press, 1996).

Google Scholar

[10] D.N. Seidman, B.W. Krakauer, and D. Udler: J. Phys. Chem. Solids., 55 (1994) 1035.

Google Scholar

[11] A. Cerezo, T.J. Godfrey, S.J. Sijbrandij, G.D.W. Smith and P.J. Warren: Rev. Sci. Instrum. 69 (1998) 49.

Google Scholar

[12] D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo and G.D.W. Smith: Ultramicroscopy 79 (1999) 287.

DOI: 10.1016/s0304-3991(99)00055-8

Google Scholar

[13] D.N. Seidman: in Materials Interfaces, Chapter 2 (eds. D. Wolf and S. Yip, Chapman & Hall, London, 1992).

Google Scholar

[14] V. Randle: The Measurement of Grain Boundary Geometry, Chapter 2 (Institute of Physics, Bristol and Philadelphia, 1993).

Google Scholar

[15] N. Maruyama: DPhil Thesis (University of Oxford, 2000).

Google Scholar

[16] N. Maruyama, G.D.W. Smith, and A. Cerezo: Mater. Sci. &Eng. A353 (2003) 126.

Google Scholar

[17] D. Blavette, P. Duval, L. Letellier, and M. Guttmann: Acta Mater. 44 (1996) 4995.

Google Scholar

[18] D. McLean, Grain Boundaries in Metals, p.11 (Clarendon Press, Oxford, 1957).

Google Scholar

[19] K. Oikawa: Tetsu to Hagane 68 (1982) 11.

Google Scholar