Influence of Substrate Temperature on Structural and Optical Properties of Co-Evaporated Cu2SnS3/ITO Thin Films

Article Preview

Abstract:

In this study report the structural and optical properties of Copper Tin Sulfide (Cu2SnS3) thin films on indium tin oxide (ITO) substrate using co-evaporation technique. High purity of copper, tin and sulfur were taken as source materials to deposit Cu2SnS3 (CTS) thin films at different substrate temperatures (200-350 °C). Further, the effect of different substrate temperature on the crystallographic, morphological and optical properties of CTS thin films was investigated. The deposited CTS thin films shows tetragonal phase with preferential orientation along (112) plane confirmed by X-ray diffraction. Micro-Raman studies reveled the formation of CTS thin films. The surface morphology, average grain size and rms values of the deposited films are examined by Scanning electron spectroscopy (SEM) and Atomic Force Microscopy (AFM). The Energy dispersive spectroscopy (EDS) shows the presence of copper, tin and sulfur with a nearly stoichiometric ratio. The optical band gap (1.76-1.63 eV) and absorption coefficient (~105 cm-1) of the films was calculated by using UV-Vis-NIR spectroscopy. The values of refractive index, extinction coefficient and permittivity of the deposited films were calculated from the optical transmittance data.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1048)

Pages:

189-197

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] D. WU, C.R Knowles, L.L.Y Chang, Copper- tin sulphides in the system Cu-Sn-S, Minerail. Mag. 50 (1986) 323-325.

DOI: 10.1180/minmag.1986.050.356.20

Google Scholar

[2] P.A Fernandes, P.M.P Salome, A.F da Cunha, Study of Ternary Cu2SnS3 and Cu3SnS4 Thin Films Prepared by Sulfurizing Stacked Metal Precursors, J. Phys. D: Appl. Phys. 43 (2010) 215403-215414.

DOI: 10.1088/0022-3727/43/21/215403

Google Scholar

[3] H. Dahman, S. Rabaoui, A. Alyamani, L. El Mir, Structural, morphological and optical properties of Cu2SnS3 thin film synthesized by spin coating technique, Vacuum. 101 (2014) 208-211.

DOI: 10.1016/j.vacuum.2013.08.019

Google Scholar

[4] M. Onoda, X. Chen, A. Sato, H. Wada, Crystal structure and twinning of monoclinic Cu2SnS3, Mater. Res. Bull. 35(2000) 1563-1570.

DOI: 10.1016/s0025-5408(00)00347-0

Google Scholar

[5] J. Han, Y. Zhou, Y. Tian, Z. Huang, X. Wang, J. Zhong, Z. Xia, B. Yang, H. Song, J . Tang, Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices, Front. Optoelectron. 7 (2014) 37-45.

DOI: 10.1007/s12200-014-0389-3

Google Scholar

[6] D. Tiwari, T. Chaudhuri, T. Shripathi, U. Deshpande, R. Rawat, Non-toxic,earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from single metal-organic precursor solution, Sol. Energy Mater. Sol. Cells. 113 (2013) 165-170.

DOI: 10.1016/j.solmat.2013.02.017

Google Scholar

[7] M. Bouaziz, M. Amlouk, S. Belgacem, Structural and optical properties of Cu2SnS3 sprayed thin film, Thin Solid Films. 517(2009) 2527-2530.

DOI: 10.1016/j.tsf.2008.11.039

Google Scholar

[8] U. Chalapathi, J. Jayasree, S. Uthanna, V. Sundara Raja, Effect of annealing temperature on the properties of spray deposited Cu2SnS3 thin films, Phys. Status Solidi A 210. 11 (2013) 2384–2390.

DOI: 10.1002/pssa.201329157

Google Scholar

[9] S. Kahraman, S. Cetinkaya, S. Yasar, I. Bilican, Polyethylene glycol-assisted growth of Cu2SnS3 promising absorbers for thin film solar cell applications, Philos. Mag. 94 (2014) 3149-3161.

DOI: 10.1080/14786435.2014.952257

Google Scholar

[10] H. Guan, H. Shen, C. Gao, X. He, Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction, J. Mater. Sci. - Mater. Electron. 24 (2013) 1490-1494.

DOI: 10.1007/s10854-012-0960-x

Google Scholar

[11] U. Chalapathi, Y. Jayasree, S. Uthanna, V. Sundara Raja, Effect of annealing on the structural, micro structural and optical properties of co-evaporated Cu2SnS3 thin films, Vacuum. 117 (2015) 121-126.

DOI: 10.1016/j.vacuum.2015.04.006

Google Scholar

[12] V. Robles, J.F. Trigo, J. Herrero, Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn, J. Alloys Compd. 642 (2015) 40–44.

DOI: 10.1016/j.jallcom.2015.04.104

Google Scholar

[13] T. Srinivasa Reddy, R. Amiruddin, M.C. Santhosh Kumar, Deposition and characterization of Cu2SnS3 thin films by co-evaporation for photovoltaic application, Sol. Energy Mater. Sol Cells. 143 (2015) 128-134.

DOI: 10.1016/j.solmat.2015.06.049

Google Scholar

[14] J. Koike, K. Chino, N. Aihara, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, Cu2SnS3 Thin-Film Solar Cells from Electroplated Precursors, Jpn. J. Appl Phy. 51 (2012) 10NC341 - 10NC343.

DOI: 10.7567/jjap.51.10nc34

Google Scholar

[15] D. Avellaneda, M.T.S. Nair, P.K. Nair, Cu2SnS3 and Cu4SnS4 Thin Films via Chemical Deposition for Photovoltaic Application, J. Electrochem. Soc. 157 (2010) D346-D352.

DOI: 10.1149/1.3384660

Google Scholar

[16] R. Bodeux, J. Leguay, S. Delbos, Influence of composition and annealing on the characteristics of Cu2SnS3 thin films grown by co sputtering at room temperature, Thin Solid Films. 582 (2015) 229-232.

DOI: 10.1016/j.tsf.2014.09.023

Google Scholar

[17] R.B. Ettlinger, A. Cazzaniga, S. Canulescu, N. Pryds, J. Schou, Pulsed laser deposition from ZnS and Cu2SnS3multicomponenttargets, Appl. Surf. Sci. 336 (2015) 385-390.

DOI: 10.1016/j.apsusc.2014.12.165

Google Scholar

[18] Q. Chen, X. Dou, Y. Ni, S. Cheng, S. Zhuang, Study and enhance the photovoltaic properties of narrow-band gap Cu2SnS3 solar cell by p–n junction interface modification, J. Colloid Interface Sci. 376 (2012) 327–330.

DOI: 10.1016/j.jcis.2012.03.015

Google Scholar

[19] S. Caporali, A. Tolstogouzov, O.M.N.D. Teodoro, M. Innocenti, F.D. Benedetto, S . Cinotti, R.A. Picca, M.C. Sportelli, N. Cioffi, Sn-deficiency in the electrodeposited ternary CuxSnySz thin films by ECALE, Sol. Energy Mater. Sol Cells. 138 (2015) 9–16.

DOI: 10.1016/j.solmat.2015.02.029

Google Scholar

[20] N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagir, Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu-Sn precursors for solar cells, Phys. Status Solidi C 10. 7–8 (2013) 1086–1092.

DOI: 10.1002/pssc.201200866

Google Scholar

[21] M.C. Santhosh Kumar, B. Pradeep, Formation and properties of AgInSe2 thin films by co-evaporation, Vacuum. 72 (2004) 369-378.

DOI: 10.1016/j.vacuum.2003.09.008

Google Scholar

[22] N.C. Ram, R.S. Anand, J. Kumar, Structural, electrical and optical properties of radio frequency sputtered indium tin oxide thin films modified by annealing in silicon oil and vacuum, Thin solid films. 556 (2014) 253–259.

DOI: 10.1016/j.tsf.2014.02.023

Google Scholar

[23] B.D. Cullity, S.R. Stock, Elements of X-ray Diffractio., Addison Wesley, London, (1978).

Google Scholar

[24] M. Adelifard, M.M.B. Mohaghegh, H. Eshghi, Preparation and characterization of Cu2SnS3 ternary semiconductor nanostructures via the spray pyrolysis technique for photovoltaic applications, Phys. Scr. 85 (2012) 035603-035609.

DOI: 10.1088/0031-8949/85/03/035603

Google Scholar

[25] P.A. Fernandes, P.M.P. Salome, A.F.D. Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering, J. Alloys Compd. 509 (2011) 7600– 7606.

DOI: 10.1016/j.jallcom.2011.04.097

Google Scholar

[26] L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass, Chem. Mater. 11 (1999) 1792-1799.

DOI: 10.1021/cm990005z

Google Scholar

[27] T. Srinivasa Reddy, M.C. Santhosh Kumar, Fabrication of visible light photodetector using co-evaporaed cu2sns3 thin films, J. Ovonic. Res. 15 (2019) 365-376.

Google Scholar