Achieving Superplasticity in Fine-Grained Al-Mg-Sc Alloys

Article Preview

Abstract:

Superplasticity denotes the ability of a limited number of materials to achieve exceptionally high tensile elongations of at least 400%. Experiments show that the Al-Mg-Sc alloys provide excellent capabilities for achieving superplastic flow and also they can be formed easily in biaxial superplastic forming operations. It is important, therefore, to examine the superplastic flow mechanism when the alloy is prepared using different procedures. This report examines the superplastic characteristics of these alloys after preparation without subjecting to any severe plastic deformation (SPD), after processing using the two SPD procedures of equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) and after processing using the alternative procedure of friction stir processing (FSP). The results are compared using each technique and they are examined with reference to a theoretical model that was developed specifically for superplastic flow in conventional alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

11-17

Citation:

Online since:

January 2021

Export:

Price:

* - Corresponding Author

[1] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[2] G.D. Bengough, A study of the properties of alloys at high temperatures, J. Inst. Metals 7 (1912) 123-178.

Google Scholar

[3] C.H.M. Jenkins, Strength of Cd-Zn and Sn-Pb alloy solder, J. Inst. Metals 40 (1928) 21-32.

Google Scholar

[4] C.E. Pearson, The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin, J. Inst. Metals 54 (1934) 111-124.

Google Scholar

[5] A.A. Presnyakov, Sverkhplastichnost¢ Metallov i Splavov, Nauka, Alma-Ata, U.S.S.R., 1969. (English translation: C.B. Marinkov, Superplasticity of Metals and Alloys, The British Library. Wetherby U.K., 1976).

Google Scholar

[6] E.E. Underwood, A review of superplasticity and related phenomena, JOM 14 (1962) 914-919.

DOI: 10.1007/bf03378205

Google Scholar

[7] W.A. Backofen, L.R. Turner, D.H. Avery, Superplasticity in an Al-Zn alloy, Trans. ASM 57 (1964) 980-990.

Google Scholar

[8] R. Grimes, Superplastic forming: evolution from metallurgical curiosity to major manufacturing tool? Mater. Sci. Tech. 19 (2003) 3-10.

DOI: 10.1179/026708303225008725

Google Scholar

[9] A.J. Barnes, Superplastic forming 40 years and still growing, J. Mater. Eng. Perform. 16 (2007) 440-454.

DOI: 10.1007/s11665-007-9076-5

Google Scholar

[10] T.G. Langdon, The mechanical properties of superplastic materials, Metall. Trans. A 13A (1982) 689-701.

Google Scholar

[11] T.G. Langdon, An evaluation of the strain contributed by grain boundary sliding in superplasticity, Mater. Sci. Eng. A174 (1994) 225-230.

DOI: 10.1016/0921-5093(94)91092-8

Google Scholar

[12] L.K.L. Falk, P.R. Howell, G.L. Dunlop, T.G. Langdon, The role of matrix dislocations in the superplastic deformation of a copper alloy, Acta Metall. 34 (1986) 1203-1214.

DOI: 10.1016/0001-6160(86)90007-6

Google Scholar

[13] R.Z. Valiev, T.G. Langdon, An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy, Acta Metall. Mater. 41 (1993) 949-954.

DOI: 10.1016/0956-7151(93)90029-r

Google Scholar

[14] Y. Xun, F.A. Mohamed, Slip-accommodated superplastic flow in Zn-22% Al, Philos. Mag. 83 (2003) 2247-2266.

DOI: 10.1080/1478643031000107230

Google Scholar

[15] Y. Xun, F.A. Mohamed, Superplastic behavior of Zn-22% Al containing nanoscale dispersion particles, Acta Mater. 52 (2004) 4401-4412.

DOI: 10.1016/j.actamat.2004.03.039

Google Scholar

[16] F.A. Mohamed, T.G. Langdon, Deformation mechanism maps for superplastic materials, Scripta Mater. 10 (1976) 759-762.

DOI: 10.1016/0036-9748(76)90358-6

Google Scholar

[17] T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar

[18] M. Kawasaki, T.G. Langdon, Review: achieving superplastic properties in ultrafine-grained materials at high temperatures, J. Mater. Sci. 51 (2016) 19-32.

DOI: 10.1007/s10853-015-9176-9

Google Scholar

[19] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys, Acta Mater. 50 (2002) 553-564.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[20] J. Wang, Z. Horita, M. Furukawa, M. Nemoto, N.K. Tsenev, R.Z. Valiev, Y. Ma, T.G. Langdon, An investigation of ductility and microstructural evolution in an Al-3% Mg alloy with submicron grain size, J. Mater. Res. 8 (1993) 2810-2818.

DOI: 10.1557/jmr.1993.2810

Google Scholar

[21] P.H.R. Pereira, Y. Huang, M. Kawasaki, T.G. Langdon, An examination of the superplastic characteristics of Al-Mg-Sc alloys after processing, J. Mater. Res. 32 (2017) 4541-4553.

DOI: 10.1557/jmr.2017.286

Google Scholar

[22] T.G. Langdon, Fracture processes in superplastic flow, Metal Sci. 16 (1982) 175-183.

Google Scholar

[23] S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy, Metall. Mater. Trans. A 32A (2001) 707-716.

DOI: 10.1007/s11661-001-1006-9

Google Scholar

[24] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[25] M. Kawasaki, T.G. Langdon, The contribution of severe plastic deformation to research on superplasticity, Mater. Trans. 60 (2019) 1123-1130.

DOI: 10.2320/matertrans.mf201915

Google Scholar