Monitoring of Chemical Resistance of New Grouting Materials

Article Preview

Abstract:

This paper deals with the study of chemical resistance of new cement-based grout for invert grouting. The aim of this work is to verify new mixtures with specific admixtures. The study monitors resistance to external sulphate attack. Specimens were placed into sulphate solution 29.8 g∙l-1 (44 g∙l-1 Na2SO4) according to DIN19753 standard. Based on the results gained, new mixtures will be designed and optimized by addition of suitable secondary raw materials (fly ash, waste foundry sand, waste glass, waste filers).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-33

Citation:

Online since:

August 2021

Export:

Price:

* - Corresponding Author

[1] Municipal standards of water supply and sewerage in the capital city Prague: Sewerage part, (Městské standardy vodovodů a kanalizací na území hl. m. Prahy: Kanalizační část), Prague, (2017).

Google Scholar

[2] Methodology of the City of Brno: City standards for sewerage facilities, (Metodika magistrátu města Brna: Městské standardy pro kanalizační zařízení), Brno, (2010).

Google Scholar

[3] ČSN 75 6101, Sewer systems and house connections, Prague: ČNI, (2012).

Google Scholar

[4] J. Hulla, P. Turček, Foundation engineering, (Zakladanie stavieb), Bratislava: Jaga group, (1998).

Google Scholar

[5] M. Horák, Aging analysis of selected materials of sewer systems, (Analýza stárnutí vybraných materiálů stokových sítí), Brno: BUT, (2013).

Google Scholar

[6] Z. Motyčka, Bentonite rock grouting: Notes on consolidation and seal rock tunnel construction, (Bentonitové injektáže hornin: Poznámky o zpevňování a těsnění hornin při výstavbě tunelů II), Ostrava, (2001).

Google Scholar

[7] J. Židek, Elimination of penetrating water into underground buildings, (Eliminace pronikajících vod do podzemních stavebních objektů), Ostrava: VSB, (2014).

Google Scholar

[8] ČSN EN 12715, Execution of special geotechnical work - Grouting, Prague: ČNI, (2001).

Google Scholar

[9] BRE CONSTRUCTION DIVISION, Concrete in aggressive ground. 3. ed., Garston, Watford: BRE, (2005).

Google Scholar

[10] Z. Liu, D. Deng, G. de Schutter, Does concrete suffer sulfate salt weathering? Construction and Building Materials. 66 (2014) 692-701.

DOI: 10.1016/j.conbuildmat.2014.06.011

Google Scholar

[11] F. Xie, J. Li, G. Zhao, P. Zhou, H. Zheng, Experimental study on performance of cast-in-situ recycled aggregate concrete under different sulfate attack exposures, Construction and Building Materials. (2020) 253.

DOI: 10.1016/j.conbuildmat.2020.119144

Google Scholar

[12] P.J.M. Monteiro, K.E. Kurtis, Time to failure for concrete exposed to severe sulfate attack, Cement and Concrete Research. 33(7) (2003) 987-993.

DOI: 10.1016/s0008-8846(02)01097-9

Google Scholar

[13] G.J. Yin, X.B- Zuo, X.N. Li, Y.X. Zou, An integrated macro-microscopic model for concrete deterioration under external sulfate attack, Engineering Fracture Mechanics. 240, (2020).

DOI: 10.1016/j.engfracmech.2020.107345

Google Scholar

[14] P. Liu, Y. Chen, W. Wang, Z. Yu, Effect of physical and chemical sulfate attack on performance degradation of concrete under different conditions, Chemical Physics Letters. 745, (2020).

DOI: 10.1016/j.cplett.2020.137254

Google Scholar

[15] H. Min, L. Sui, F. Xing, H. Tian, Y. Zhou, An effective transport model of sulfate attack in concrete. Construction and Building Materials. 216 (2019) 365-378.

DOI: 10.1016/j.conbuildmat.2019.04.218

Google Scholar

[16] A.M. Hossack, M.D.A. Thomas, The effect of temperature on the rate of sulfate attack of Portland cement blended mortars in Na2SO4 solution, Cement and Concrete Research. 73 (2015) 136-142.

DOI: 10.1016/j.cemconres.2015.02.024

Google Scholar

[17] N.B. Al-Akhras, Durability of metakaolin concrete to sulfate attack. Cement and Concrete Research. 36(9) (2006) 1727-1734.

DOI: 10.1016/j.cemconres.2006.03.026

Google Scholar

[18] P. Hou, Z. Guo, Q. Li, et al., Comparison study on the sulfate attack resistivity of cement-based materials modified with nanoSiO2 and normal SCMs: Pore structure and phase composition. Construction and Building Materials. 228, (2019).

DOI: 10.1016/j.conbuildmat.2019.116764

Google Scholar

[19] Z. Liu, W. Hu, L. Hou, D. Deng, Effect of carbonation on physical sulfate attack on concrete by Na2SO4, Construction and Building Materials. 193 (2018) 211-220.

DOI: 10.1016/j.conbuildmat.2018.10.191

Google Scholar

[20] A.R. Suleiman, M.L. Nehdi, Exploring effects of supplementary cementitious materials in concrete exposed to physical salt attack, Magazine of Concrete Research. 69(11) (2017) 576-585.

DOI: 10.1680/jmacr.16.00406

Google Scholar

[21] M.F. Najjar, M.L. Nehdi, A.M. Soliman, T.M. Azabi, Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack, Construction and Building Materials. 137 (2017) 141-152.

DOI: 10.1016/j.conbuildmat.2017.01.112

Google Scholar

[22] J. Ledererová, et al., Biocorrosive effects on building structures, (Biokorozní vlivy na stavební díla), first ed., Prague: Silikátový svaz, (2009).

Google Scholar

[23] DIN 19753, Draft on mortars for construction and rehabilitation sewer system. La Plaine Saint-Denis Cedex, (2017).

Google Scholar