Restoration Mechanism and Sub-Structural Characteristics of Duplex Stainless Steel with an Initial Equiaxed Austenite Morphology during Post-Deformation Annealing

Article Preview

Abstract:

Uni-axial compression (UAC) tests and further post deformation annealing (PDA) were done for 23Cr-6Ni-3Mo duplex stainless steel (DSS). The initial morphology was equiaxed (EQ) in nature. In the first stage of PDA, austenite showed limited static recrystallization (SRX) followed by static recovery (SRV); however ferrite showed static recovery (SRV). In the second stage of PDA, the austenite showed grain coarsening followed by disintegration of substructures (DIS); and ferrite revealed mostly SRV leading to grain coarsening. The third stage of PDA envisages substructural disintegration of unstable substructure leading to saturation in both austenite and ferrite. The sub-structural characteristics were provided by Electron backscattered diffraction (EBSD) and its post processing were done by using HKL Channel 5 software.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-73

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] Kumar, Pawan, et al. EBSD Investigation to Study the Restoration Mechanism and Substructural Characteristics of 23Cr–6Ni–3Mo Duplex Stainless Steel During Post-deformation Annealing., Transactions of the Indian Institute of Metals (2020): 1-11.

DOI: 10.1007/s12666-020-01884-1

Google Scholar

[2] Haghdadi N, Cizek P, Hodgson PD, Tari V, Rohrer GS, Beladi H. Effect of ferrite-to-austenite phase transformation path on the interface crystallographic character distributions in a duplex stainless steel. Acta Materialia. 2018 Feb 15;145:196-209.

DOI: 10.1016/j.actamat.2017.11.057

Google Scholar

[3] Brünger E, Wang X, Gottstein G. Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H. Scripta materialia. 1998 May 12;38(12):1843-9.

DOI: 10.1016/s1359-6462(98)00124-9

Google Scholar

[4] Belyakov A, Miura H, Sakai T. Dynamic recrystallization in ultra fine-grained 304 stainless steel. Scripta materialia. 2000 Jun 30;43(1):21-6.

DOI: 10.1016/s1359-6462(00)00373-0

Google Scholar

[5] Dehghan-Manshadi A, Beladi H, Barnett MR, Hodgson PD. Recrystallization in 304 austenitic stainless steel. InMaterials Science Forum 2004 (Vol. 467, pp.1163-1168). Trans Tech Publications.

DOI: 10.4028/www.scientific.net/msf.467-470.1163

Google Scholar

[6] Wang X, Brünger E, Gottstein G. The role of twinning during dynamic recrystallization in alloy 800H. Scripta materialia. 2002 Jun 14;46(12):875-80.

DOI: 10.1016/s1359-6462(02)00072-6

Google Scholar

[7] Sakai T. Dynamic recrystallization microstructures under hot working conditions. Journal of Materials Processing Technology. 1995 Aug 1;53(1-2):349-61.

DOI: 10.1016/0924-0136(95)01992-n

Google Scholar

[8] Haghdadi N, Cizek P, Beladi H, Hodgson PD. Dynamic Restoration Processes in a 23Cr-6Ni-3Mo Duplex Stainless Steel: Effect of Austenite Morphology and Interface Characteristics. Metallurgical and Materials Transactions A. 2017 Oct 1;48(10):4803-20.

DOI: 10.1007/s11661-017-4227-2

Google Scholar

[9] Haghdadi N, Cizek P, Beladi H, Hodgson PD. Dynamic Restoration Processes in a 23Cr-6Ni-3Mo Duplex Stainless Steel: Effect of Austenite Morphology and Interface Characteristics. Metallurgical and Materials Transactions A. 2017 Oct 1;48(10):4803-20.

DOI: 10.1007/s11661-017-4227-2

Google Scholar

[10] Haghdadi N, Martin D, Hodgson P. Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel. Materials & Design. 2016 Sep 15;106:420-3.

DOI: 10.1016/j.matdes.2016.05.118

Google Scholar

[11] Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Elsevier; 2012 Dec 2.

Google Scholar

[12] Sakai, Taku, and J. J_ Jonas. Overview no. 35 dynamic recrystallization: mechanical and microstructural considerations., Acta Metallurgica 32.2 (1984): 189-209.

DOI: 10.1016/0001-6160(84)90049-x

Google Scholar

[13] Doherty, R. D., et al. Current issues in recrystallization: a review., Materials Science and Engineering: A 238.2 (1997): 219-274.

Google Scholar

[14] Guo-Zheng, Quan, et al. Effect of temperatures and strain rates on the average size of grains refined by dynamic recrystallization for as-extruded 42CrMo steel., Materials Research 16.5 (2013): 1092-1105.

DOI: 10.1590/s1516-14392013005000091

Google Scholar

[15] Sakai, Taku, and J. J_ Jonas. Overview no. 35 dynamic recrystallization: mechanical and microstructural considerations., Acta Metallurgica 32.2 (1984): 189-209.

DOI: 10.1016/0001-6160(84)90049-x

Google Scholar

[16] Montheillet, F., and J. J. Jonas. Temperature dependence of the rate sensitivity and its effect on the activation energy for high-temperature flow., Metallurgical and Materials Transactions A 23.10 (1996): 3346-3348.

DOI: 10.1007/bf02663887

Google Scholar

[17] Davenport, S. B., et al. Development of constitutive equations for modelling of hot rolling., Materials Science and Technology16.5 (2000): 539-546.

Google Scholar

[18] Haghdadi N, Cizek P, Beladi H, Hodgson PD. Hot deformation and restoration mechanisms in duplex stainless steels: Effect of strain rate. Metallurgia Italiana. 2017 Sep 1(9):5-16.

Google Scholar

[19] Haghdadi N, Zarei-Hanzaki A, Farabi E, Cizek P, Beladi H, Hodgson PD. Strain rate dependence of ferrite dynamic restoration mechanism in a duplex low-density steel. Materials & Design. 2017 Oct 15;132:360-6.

DOI: 10.1016/j.matdes.2017.07.009

Google Scholar

[20] Ming MA, Hua DI, Tang ZY, Zhao JW, Jiang ZH, Fan GW. Effects of temperature and strain rate on flow behavior and microstructural evolution of super duplex stainless steel under hot deformation. Journal of Iron and Steel Research, International. 2016 Mar 1;23(3):244-52.

DOI: 10.1016/s1006-706x(16)30041-3

Google Scholar