Application of HOHWM for Vibration Analysis of Nanobeams

Article Preview

Abstract:

The higher order Haar wavelet method (HOHWM) introduced recently by workgroup is utilized for vibration analysis of nanobeams. The results obtained are compared with widely used Haar wavelet method. It has been observed that the absolute error has been reduced several magnitudes depending on number of collocation points used and the numerical rate of convergence was improved from two to four. These results are obtained in the case of the simplest higher order approach where expansion parameter k is equal to one. The complexity issues of the HOHWM are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-235

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] CF. Chen, CH. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Contr. Theor. Appl. 144(1) (1997), 87–94.

DOI: 10.1049/ip-cta:19970702

Google Scholar

[2] LMS.Castro, AJM. Ferreira, S. Bertoluzza, RC. Batra, JN. Reddy, A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory, Compos. Struct. 92(8) (2010) 1786–1792.

DOI: 10.1016/j.compstruct.2010.01.021

Google Scholar

[3] C. Cattani, Harmonic wavelets toward the solution of nonlinear PDE, Comput. Math. Appl. 50 (2005) 1191–1210.

Google Scholar

[4] Ü. Lepik Solving PDEs with the aid of two dimensional Haar wavelets. Computers & Mathematics with Applications. 61 (2011) 1873-1879.

DOI: 10.1016/j.camwa.2011.02.016

Google Scholar

[5] X. Xie, G. Jin, T. Ye, Z. Liu, Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method. Applied Acoustics. 85 (2014) 130-142.

DOI: 10.1016/j.apacoust.2014.04.006

Google Scholar

[6] X. Xie, G. Jin, W. Li, Z. Liu, A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures. Composite Structures 111 (2014) 20–30.

DOI: 10.1016/j.compstruct.2013.12.019

Google Scholar

[7] G. Jin, X. Xie, Z.Liu, The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory, Composite Struct. 108 (2014) 435–448.

DOI: 10.1016/j.compstruct.2013.09.044

Google Scholar

[8] G. Jin, X. Xie, Z.Liu, Free vibration analysis of cylindrical shells using the Haar wavelet method. International Journal of Mechanical Sciences, 77 (2013) 47-56.

DOI: 10.1016/j.ijmecsci.2013.09.025

Google Scholar

[9] Ü. Lepik, Haar wavelet method for nonlinear integro-differential equations. Applied mathematics and Computation.176 (2006) 324-333.

DOI: 10.1016/j.amc.2005.09.021

Google Scholar

[10] Ü. Lepik, Application of the Haar wavelet transform to solving integral and differential Equations. Proceedings of the Estonian Academy of Sciences. Physics. Math. 56(1) (2007) 28-46.

DOI: 10.3176/phys.math.2007.1.03

Google Scholar

[11] SU. Islam, I. Aziz, AS. Al-Fhaid, An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. Journal of Computational and Applied Mathematics. 260 (2014) 449–469.

DOI: 10.1016/j.cam.2013.10.024

Google Scholar

[12] I. Aziz, SU. Islam, F. Khana, A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math. 272, (2014) 70–80.

DOI: 10.1016/j.cam.2014.04.027

Google Scholar

[13] I. Aziz, SU. Islam, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math. 239(1) (2013) 333–345.

DOI: 10.1016/j.cam.2012.08.031

Google Scholar

[14] S. Haq, A. Ghafoor, An efficient numerical algorithm for multi-dimensional time dependent partial differential equations. Computers and Mathematics with Appl. 75(8) (2018) 2723-2734.

DOI: 10.1016/j.camwa.2018.01.004

Google Scholar

[15] S. Haq, A. Ghafoor, M. Hussain, S. Arifeen, Numerical solutions of two dimensional Sobolev and generalized Benjamin–Bona–Mahony–Burgers equations via Haar wavelets. Computers and Mathematics with Applications (Article in press).

DOI: 10.1016/j.camwa.2018.09.058

Google Scholar

[17] N. Haider, I. Aziz, Siraj-ul-Islam, Numerical solution of 2D and 3D elliptic-type interface models with regular interfaces (Article in press).

DOI: 10.1007/s00366-018-0652-0

Google Scholar

[18] V.S.M. Anandini, Y.H. Gopalakrishna, N.R. Raajan, Secure electrocardiograph communication through discrete wavelet transform, Advances in Intelligent Syst. and Comp., 397 (2016) 463-470.

DOI: 10.1007/978-81-322-2671-0_44

Google Scholar

[19] I. Aziz, R. Amin, Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet, Applied Math. Modelling 40(23-24) (2016) 10286-10299.

DOI: 10.1016/j.apm.2016.07.018

Google Scholar

[20] G. Hariharan, D. Sathiyaseelan, Efficient spectral methods for a class of unsteady-state free-surface ship models using wavelets, Zeitschrift fur Angewandte Math. und Physik 68(2) (2018) 31.

DOI: 10.1007/s00033-017-0777-9

Google Scholar

[21] L. Jaanuska, H. Hein, Crack identification in beams using haar wavelets and machine learning methods, International Journal of Mechanics, 10 (2016) 281-287.

Google Scholar

[22] H. Hein, L. Feklistova, Computationally efficient delamination detection in composite beams using Haar wavelets, Mech. Syst. Signal. Pr. 25(6) (2011) 2257–2270.

DOI: 10.1016/j.ymssp.2011.02.003

Google Scholar

[23] G. Hariharan, K. Kannan, Review of wavelet methods for the solution of reaction-diffusion problems in science and engineering. Applied Mathematical Modelling. 38(3) (2014) 799-813.

DOI: 10.1016/j.apm.2013.08.003

Google Scholar

[24] Ü. Lepik, H. Hein, Haar wavelets: with applications, Springer, New York, (2014).

Google Scholar

[25] B. Shvartsman, J. Majak, Numerical method for stability analysis of functionally graded beams on elastic foundation, Applied Mathematical Modelling 40(5-6) (2016) 3713-3719.

DOI: 10.1016/j.apm.2015.09.060

Google Scholar

[26] J.Majak, BS. Shvartsman, K. Karjust, M. Mikola, A. Haavajõe, M. Pohlak, On the accuracy of the Haar wavelet discretization method. Composites Part B: Engineering, 80 (2015) 321–327.

DOI: 10.1016/j.compositesb.2015.06.008

Google Scholar

[27] M. Kirs, K. Karjust, I. Aziz, E. Õunapuu, E. Tungel, Free vibration analysis of a functionally graded material beam: evaluation of the Haar wavelet method. Proceedings of the Estonian Academy of Sciences, 67 (1) (2018) 1−9.

DOI: 10.3176/proc.2017.4.01

Google Scholar

[28] J.Majak, M. Pohlak, K. Karjust, M. Eerme, J. Kurnitski, BS. Shvartsman, New higher order Haar wavelet method: Application to FGM structures. Composite Structures, 201, (2018) 72−78.

DOI: 10.1016/j.compstruct.2018.06.013

Google Scholar

[29] J.Fan, J. Huang, Haar Wavelet Method for Nonlinear Vibration of Functionally Graded CNT-Reinforced Composite Beams Resting on Nonlinear Elastic Foundations in Thermal Environment. Shock and Vibration 2018, Art. nr.9597541.

DOI: 10.1155/2018/9597541

Google Scholar

[30] S. Narendar, S. Gopalakrishnan, Nonlocal continuum mechanics formulation for axial, flexural, shear and contraction coupled wave propagation in single walled carbon nanotubes. Latin American Journal of Solids and Structures, 9(4) (2012) 497–514.

DOI: 10.1590/s1679-78252012000400005

Google Scholar

[31] M. Aydogdu, A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E 41 (2009) 1651–1655.

DOI: 10.1016/j.physe.2009.05.014

Google Scholar

[32] A. Aruniit, J. Kers, D. Goljandin, M. Saarna, K. Tall, J. Majak, H. Herranen, Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics. Materials Science (Medžiagotyra) 17 (2011) 1–6.

DOI: 10.5755/j01.ms.17.3.593

Google Scholar

[33] J.Majak, M. Pohlak, M. Eerme, T. Velsker, Design of car frontal protection system using neural networks and genetic algorithm. Mechanika 18 (4) (2012) 453−460.

DOI: 10.5755/j01.mech.18.4.2325

Google Scholar

[34] J. Lellep, J. Majak, Nonlinear constitutive behavior of orthotropic materials. Mechanics of Composite Materials 36 (4) (2000) 261−266.

DOI: 10.1007/bf02262803

Google Scholar

[35] K. Karjust, M. Pohlak, J. Majak, Technology Route Planning of Large Composite Parts. International Journal of Material Forming 3 (2010) 631−634.

DOI: 10.1007/s12289-010-0849-2

Google Scholar

[36] M. Durkacova, J. Lavin, K. Karjust, KPI optimization for product development process. 23rd DAAAM International Symposium on Intelligent Manufact. and Automam. 2 (2012) 1079-1084.

DOI: 10.2507/23rd.daaam.proceedings.252

Google Scholar

[37] M.Paavel, A. Snatkin, K. Karjust, PLM optimization with cooperation of PMS in production stage, Archives of Materials Science and Engineering, 60(1) (2013) 38-45.

Google Scholar