Synthesis of Spherical Phosphorus-Containing Mesoporous Silica for Improving their Reaction Behavior in Simulated Body Fluid

Article Preview

Abstract:

Spherical phosphorus–containing mesoporous silica (PMPS) particles were synthesized. In the PMPS particle preparation using the cationic surfactant (cetyltrimethylammonium bromide) as the template, the amphiphilic surfactant (Pluronic P123) and diethyl(2–bromoethyl)phosphonate were used for the particle shape control and the phosphorus source, respectively. Furthermore, we investigated the chemical reactions of the PMPS particles in simulated body fluid (SBF). By the phosphorus–containing, the hydroxyapatite formation and silicate ion dissolution ability on the PMPS particle surfaces were enhanced. These characteristic features will be useful for the biomedical applications such as bone formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

October 2018

Export:

Price:

* - Corresponding Author

[1] F. Tang, L. Li, D. Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery, Adv Mater. 22 (2012) 1504–1534.

DOI: 10.1002/adma.201104763

Google Scholar

[2] A. Sugawara–Narutaki, Formation of Nanoporous Architectures through The Synergetic Self-assembly of Inorganic Nanoparticles and Amphiphilic Polymers, Bull. Chem. Soc. Japan. 52 (2017) 15–19.

Google Scholar

[3] T. Kataoka, L. Wang, K. Kobayashi, M. Nishikawa, M. Tagaya, Incorporation of terbium (Ⅲ) ion into mesoporous silica particles, Jpn. J. Appl. Phys. 55 (2016) 105503.

DOI: 10.7567/jjap.55.105503

Google Scholar

[4] A. Isobe, S. Takeshita, T. Isobe, Composites of Eu3+–Doped Calcium Apatite Nanoparticles and Silica Particles: Comparative Study of Two Preparation Methods, Langmuir. 31 (2015) 1811–1819.

DOI: 10.1021/la503652w

Google Scholar

[5] P. Yang, Z. Quan, C. Li, X. Kang, H. Lian, J. Lin, Bioactive, luminescent and mesoporous europium–doped hydroxyapatite as a drug carrier, Biomaterials. 29 (2008) 4341–4347.

DOI: 10.1016/j.biomaterials.2008.07.042

Google Scholar

[6] D.W. Wang, F. Li, Z. G. Chen, G. Q. Lu, H. M. Cheng, Synthesis and Electrochemical Property of Boron–Doped Mesoporous Carbon in Supercapacitor, Chem. Mater. 20 (2008) 7195–7200.

DOI: 10.1021/cm801729y

Google Scholar

[7] M. Tagaya, K. Kobayashi, M. Nishikawa, Additive effect of phosphoric acid on phosphorus–containing mesoporous silica film formation, Mater. Lette. 164 (2016) 651–654.

DOI: 10.1016/j.matlet.2015.11.070

Google Scholar

[8] M. Colilla, F. Balas, M. Manzano, M. Vallet–Regí, Novel method to enlarge the surface area of SBA–15, Chem. Mater. 19 (2007) 3099–3101.

DOI: 10.1021/cm071032p

Google Scholar

[9] Q. He, J. Shi, M. Zhu, Y. Chen, F. Chen, The three–stage in vitro degradation behavior of mesoporous silica in simulated body fluid, Micropor Mesopor Mat, 131 (2010) 314–320.

DOI: 10.1016/j.micromeso.2010.01.009

Google Scholar

[10] H. Yu, Q. Z. Zhai, Mesoporous SBA–15 molecular sieve as a carrier for controlled release of nimodipine, Micropor Mesopor Mat. 123 (2009) 298–305.

DOI: 10.1016/j.micromeso.2009.04.013

Google Scholar

[11] I. Izquierdo–Barba, L. Ruiz–González, J. C. Doadrio, J. M. González–Calbet, M. Vallet–Regí. Tissue regeneration: A new property of mesoporous materials, Solid State Sci. 7 (2005) 983–989.

DOI: 10.1016/j.solidstatesciences.2005.04.003

Google Scholar

[12] X. Li, J. Shi, Y. Zhu, W. Shen, H. Li, J. Liang, J. Gao, A Template Route to the Preparation of Mesoporous Amorphous Calcium Silicate With High In Vitro Bone-Forming Bioactivity, J Biomed Mater Res B Appl Biomater. 83 (2007) 431–439.

DOI: 10.1002/jbm.b.30813

Google Scholar

[13] Tadashi Kokubo, Hiroaki Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907–2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[14] Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a Theory of the van der Waals Adsorption of Gases, J. Am. Chem. Soc. 62 (1940) 1723–1732.

DOI: 10.1021/ja01864a025

Google Scholar

[15] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. Computations from nitrogrn isotherms, J. Am. Chem. Soc. 73 (1951) 373−380.

DOI: 10.1021/ja01145a126

Google Scholar

[16] T. Okazaki, W. Wang, H. Kuramitz, N. Hata, S. Taguchi, Molybdenum blue spectrophotometry for trace arsenic in ground water using a soluble membrane filter and calcium carbonate column, Anal. Sci. 29 (2013) 67–72.

DOI: 10.2116/analsci.29.67

Google Scholar

[17] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603–619.

DOI: 10.1351/pac198557040603

Google Scholar