Effect of Electron Bombardment on Polyimide Film

Article Preview

Abstract:

Interaction of high energy electrons with spacecraft materials, such as polyimide (PI, Kapton-H®), is known to cause their physical degradation. However, understanding of the chemical nature of this damage and the effect on the electrical and optical properties of PI is still limited. This lack of understanding limits predictive spacecraft models (charging, thermal, etc) as only pristine material properties are used for calculation. This is a major source of error in spacecraft construction and anomaly resolution, since PI properties change after exposure to the space environment. In the presented study, we analyze the chemical, electrical, and optical changes to polyimide after exposure to 90 keV electrons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-53

Citation:

Online since:

January 2018

Export:

Price:

* - Corresponding Author

[1] A. Rahnamoun and A. van Duin, The Journal of Physical Chemistry A 118 (15), 2780-2787 (2014).

Google Scholar

[2] C. J. Wohl, M. A. Belcher, S. Ghose and J. W. Connell, Applied Surface Science 255 (18), 8135-8144 (2009).

DOI: 10.1016/j.apsusc.2009.05.030

Google Scholar

[3] M. Schumann, R. Sauerbrey and M. Smayling, Applied physics letters 58 (4), 428-430 (1991).

Google Scholar

[4] D. A. Russell, J. W. Connell and L. B. Fogdall, Journal of spacecraft and rockets 39 (6), 833-838 (2002).

Google Scholar

[5] G. Marletta and F. Iacona, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 80-1, 1045-1049 (1993).

DOI: 10.1016/0168-583x(93)90733-m

Google Scholar

[6] R. Mehnert, in Application of Particle and Laser Beams in Materials Technology, edited by P. Misaelides (1995), Vol. 283, pp.557-580.

Google Scholar

[7] T. Paulmier, B. Dirassen, M. Arnaout, D. Payan and N. Balcon, presented at the Solid Dielectrics (ICSD), 2013 IEEE International Conference on, 2013 (unpublished).

DOI: 10.1109/icsd.2013.6619845

Google Scholar

[8] C. Meng, W. Fang, L. Jing and Z. Hai-Bo, Chinese Physics B 21 (12), 127901 (2012).

Google Scholar

[9] E. P. Daniel P. Engelhart, Sunita Humagain, Steven Greenbaum, Dale Ferguson, Russell Cooper, Ryan Hoffmann, IEEE transactions on plasma science Submitted for publication (IEEE Transactions on Plasma Science Special Issue - Spacecraft Charging Technology – 2017) (2017).

DOI: 10.1109/tps.2017.2729516

Google Scholar

[10] R. Cooper and R. Hoffmann, Air Force Technical Report AFRL-RV-PS-TP-2015-0012 (2015).

Google Scholar

[11] G. Ginet, T. O'Brien, S. Huston, W. Johnston, T. Guild, R. Friedel, C. Lindstrom, C. Roth, P. Whelan and R. Quinn, Space Sci Rev 179 (1-4), 579-615 (2013).

DOI: 10.1007/s11214-013-9964-y

Google Scholar

[12] D. P. E. Elena Plis, David Barton, Russell Cooper, Dale Ferguson, Ryan Hoffmann, Physica Status Solidi B-Basic Research Accepted for publication (2017).

Google Scholar

[13] J. R. Dennison, J. Brunson, P. Swaminathan, N. W. Green and A. R. Frederickson, IEEE transactions on plasma science 34 (5), 2191-2203 (2006).

DOI: 10.1109/tps.2006.883400

Google Scholar

[14] S. S. Yohei Komiyama, Hiroaki Miyake, Yasuhiro Tanaka, Tatsuo Takada in Protection of Materials and Structures From the Space Environment, edited by M. T. Jacob Kleiman, Yugo Kimoto (Springer Verlag, 2012), p.456.

Google Scholar

[15] Y. N. Gartstein and E. M. Conwell, Physical Review B 51 (11), 6947-6952 (1995).

Google Scholar

[16] C. P. Ennis and R. I. Kaiser, Physical Chemistry Chemical Physics 12 (45), 14902-14915 (2010).

Google Scholar

[17] M. A. George, B. L. Ramakrishna and W. S. Glaunsinger, Journal of Physical Chemistry 94 (12), 5159-5164 (1990).

Google Scholar

[18] R. Toomer and T. Lewis, Journal of Physics D: Applied Physics 13 (7), 1343 (1980).

Google Scholar