Synthesis and Characterization of Cerium- and Lanthanum Containing Bioactive Glass

Article Preview

Abstract:

Synthesis and characterization of bioglass® of general composition (45-X-Y) SiO2, 24.5 Na2O, 24.5 CaO and 6.0 P2O5 (wt %) was modified by addition of X= (0-1) wt % of CeO2 and Y= (0-1) wt % of La2O3 respectively. These five samples were prepared in alumina crucible via melting route at a temperature of 1400±5 °C with air as a furnace atmosphere. These glass samples were immersed in simulated body fluid (SBF) for different time period and their bioactivity were determined by Fourier transform infrared spectroscopy (FTIR) analysis. Surface morphology was studied by using Scanning electron microscope (SEM). Bioactivity, pH measurement of bioactive glass was carried out and mechanical properties of these glasses increased with increasing concentration of CeO2 and La2O3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

617-628

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] L.L. Hench, 1991 J. Am. Ceram. Soc. 74 1487.

Google Scholar

[2] Bohner . M and Lemaitre J 2009 Biomaterials 30 2175.

Google Scholar

[3] L.L. Hench, O. Andersson, in: L.L. Hench, J. Wilson (Eds. ), An Introduction to Bioceramics, World Scientific, Singapore, (1993).

Google Scholar

[4] L.L. Hench, 2006 J. Mater. Sci. Mater. Med. 17 967.

Google Scholar

[5] L.L. Hench, Splinter R J, Allen W C and Greenlee T K 1971 J. Biomed. Mater. Res. Symp. 334 117.

Google Scholar

[6] Kokubo T 1991 Biomaterials 12 155.

Google Scholar

[7] Legeros R Z 2002 Clin. Orthop. Relat. Res. 395 81.

Google Scholar

[8] L.L. Hench, I. Thompson, J. R. Soc. Interface 7 (2010) 379–391.

Google Scholar

[9] S. Jung, Missouri University of Science and Technology (PhD dissertation), (2010).

Google Scholar

[10] J.R. Jones, L.M. Ehrenfried, P. Saravanapavan, L.L. Hench, J. Mater. Sci. Mater. Med. 17 (2006) 989-996.

DOI: 10.1007/s10856-006-0434-x

Google Scholar

[11] M. Diba, F. Tapia, A.R. Boccaccini, Int. J. Appl. Glass Sci. 3(2012) 221-253.

Google Scholar

[12] Aylin M. Deliormanlı, J. Mater. Sci. Mater. Med. 26 (2015)67.

Google Scholar

[13] J. Massera A, M. Vassallo-Breillot a, B. Törngrenb, B. Glorieuxc, L. Hupa a Journal of Non-Crystalline Solids 402 (2014) 28–35.

DOI: 10.1016/j.jnoncrysol.2014.05.006

Google Scholar

[14] J.L. Rygel, C.G. Pantano, J. Non-Cryst. Solids 355 (2009) 2622–2629.

Google Scholar

[15] C. Leonelli, G. Lusvardi, G. Malavasi, L. Menabue, M. Tonelli, J. Non-Cryst. Solids 316 (2003) 198-216.

DOI: 10.1016/s0022-3093(02)01628-9

Google Scholar

[16] Vikash Kumar Vyasa, Arepalli Sampath Kumar, Akher Ali, Sunil Prasada, Pradeep Srivastava, Sarada Prasanna Mallick, Md Ershad, Assessment of nickel oxide substituted bioactiveglass-ceramic on in vitro bioactivityand mechanical properties, boletín de la sociedad española de cerámica y vidrio 55 (2016).

DOI: 10.1016/j.bsecv.2016.09.005

Google Scholar

[17] F.H. El Batal, A. El Kheshen, Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2–Na2O–CaO–P2O5 and effect of gamma irradiation, Mater. Chem. Phys. 110 (2–3) (2008) 352–362.

DOI: 10.1016/j.matchemphys.2008.02.011

Google Scholar

[18] L.L. Hench, Splinter R J, Allen W C and Greenlee T K 1971 J. Biomed. Mater. Res. Symp. 334 117.

Google Scholar

[19] Filgueiras MRT, G. La. Torre and L.L. Hench , 1993 J. Biomed. Mater. Res. 27 1485.

Google Scholar

[20] D. Muller, G. Berger, I. Grunze, G. Ladwig, E. Hallas, U. Haubenreisser, Influence of aluminum ions on fluorescent spectra and up conversion in co-doped CaF2–Al2O3–P2O5–SiO2: Ho3+ and Er3+ glass system, Phys. Chem. Glasses 24(1983) 37–45.

DOI: 10.1063/1.3464257

Google Scholar

[21] R.K. Brow, D.R. Tallant, Structural design of sealing glasses, J. Non- Cryst. Solids 222 (1997) 396-406.

DOI: 10.1016/s0022-3093(97)90142-3

Google Scholar

[22] C.C. Lin, P. Shen, H.M. Chang, Y. J. Yang, Composition dependent structure and elasticity of lithium silicate glasses: effect of ZrO2 additive and the combination of alkali silicate glasses, J. Eur. Ceram. Soc. 26 (2006) 3613–3620.

DOI: 10.1016/j.jeurceramsoc.2006.01.010

Google Scholar

[23] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705-1728. Mater. Med. 17 (2006) 989-996.

Google Scholar

[24] W. Chengtie, Y. Ramaswamy, D. Kwik, H. Zreiqat, The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties, Biomaterials 28 (2007)3171-3181.

DOI: 10.1016/j.biomaterials.2007.04.002

Google Scholar

[25] Hanan H. Beherei, Khaled R. Mohamed, Gehan T. El-Bassyouni, Fabrication and characterization of bioactive glass (45S5) / titania biocom- posites, Ceram. Int. 35 (2009)1991-(1997).

DOI: 10.1016/j.ceramint.2008.10.014

Google Scholar

[26] E. Verne, S. Di Nunzio, M. Bosetti, P. Appendino, C. Vitale Brovarone, G. Maina, M. Cannas, Surface characterization of silver-doped bioactive glass, Biomaterials 26 (2005) 5111–5119.

DOI: 10.1016/j.biomaterials.2005.01.038

Google Scholar

[27] C.Y. Kim, A.E. Clark, L.L. Hench, Early stages of calcium-phosphate layer formation in bioglasses, J. Non-Cryst. Solids113 (2) (1989) 195–202.

DOI: 10.1016/0022-3093(89)90011-2

Google Scholar

[28] M.R. Filgueiras,G. LaTorre, L.L. Hench, Solution effects on the surface reactions of three bioactive glass compositions, J. Biomed. Mater. Res. 27 (12) (1993) 1485–1493.

DOI: 10.1002/jbm.820271204

Google Scholar

[29] I. Rehman, M. Karsh, L.L. Hench, W. Bonfield, Analysis of apatite layers on glass–ceramic particulate using FTIR and FT-Raman spectroscopy, J. Biomed. Mater. Res. 50 (2) (2000) 97–100.

DOI: 10.1002/(sici)1097-4636(200005)50:2<97::aid-jbm1>3.0.co;2-7

Google Scholar

[30] Satoshi Hayakawa, Kanji Tsuru, C hikara Ohtsuki, Akiyoshi Osaka, Mechanism of apatite formation on a sodium silicate glass in a simulated body fluid, J. Am. Ceram. Soc. 82 (1999) 2155–2160.

DOI: 10.1111/j.1151-2916.1999.tb02056.x

Google Scholar

[31] Toshihiro Kasuga, Yoshimasa Hosoi, Masayuki Nogami, Mitsuo Niinomi, Apatite formation on calcium phosphate invert glasses in simulated body fluid, J. Am. Ceram. Soc. 84 (2001) 45–52.

DOI: 10.1111/j.1151-2916.2001.tb00676.x

Google Scholar