Preliminary Investigation on FRP Profiles for the Structural Retrofit of Masonry Structures

Article Preview

Abstract:

The paper explores the perspectives of pultruded FRP (PFRP) profiles in the field of masonry building preservation, for ancillary structures or strengthening techniques. The available knowledge about interfaces is briefly summarized; recent experimental results about bolted PFRP-to-masonry joints are cited. A numeric predictive analysis, aimed at evaluating the shear interface behaviour of adhesive PFRP-to-masonry joints, is shown in view of foreseen laboratory tests. The numeric results enlighten a clear influence of compressive loading on the peak shear displacement at varying transfer length. The model, which relies on the assumption of frictional joint behaviour, appears to represent the joint sliding in a satisfactory way.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-84

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] G. Boscato, S. Russo, Dissipative capacity on FRP spatial pultruded structure, Compos. Struct. 113 (2014): 339–353.

DOI: 10.1016/j.compstruct.2014.03.036

Google Scholar

[2] G. Maddaloni, M. Di Ludovico, A. Balsamo, A. Prota, Out-of-plane experimental behaviour of T-shaped full scale masonry wall strengthened with composite connections, Compos. Part B 93 (2016) 328-343.

DOI: 10.1016/j.compositesb.2016.03.026

Google Scholar

[3] B. Ghiassi, G. Marcari, D. V. Oliveira, P. B. Lourenço, Numerical analysis of bond behavior between masonry bricks and composite materials. Eng. Struct. 43 (2012): 210-220.

DOI: 10.1016/j.engstruct.2012.05.022

Google Scholar

[4] M. R. Valluzzi, D. V. Oliveira, G. de Felice et al., Round robin test for composite-to-brick shear bond characterization. Mater. Struct. 45 (2012): 1761-1791.

Google Scholar

[5] K. M. C. Konthesingha, M. J. Masia, R. B. Petersen, A. W. Page, Experimental evaluation of static cyclic in-plane shear behavior of unreinforced masonry walls strengthened with NSM FRP strips, J. Compos. Constr. 19 (2015): 04014055.

DOI: 10.1061/(asce)cc.1943-5614.0000512

Google Scholar

[6] G. Milani, A. Bucchi, Kinematic FE homogenized limit analysis model for curved masonry structures strengthened by near surface mounted FRP bars, Compos. Struct. 93 (2010): 239-258.

DOI: 10.1016/j.compstruct.2010.05.013

Google Scholar

[7] T. Li, N. Galati, J. G. Tumialan, A. Nanni, Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars, ACI Struct. J. 102 (2005): 569-577.

DOI: 10.14359/14561

Google Scholar

[8] R. B. Petersen, N. Ismail, N., M. J. Masia, J. M. Ingham, Finite element modelling of unreinforced masonry shear wallettes strengthened using twisted steel bars. Construction and Building Materials, 33 (2012) 14-24.

DOI: 10.1016/j.conbuildmat.2012.01.016

Google Scholar

[9] J. L. Dawe, C. K. Seah, Y. Liu, A computer model for predicting infilled frame behaviour, Can. J. Civ. Eng. 28 (2001): 133-148.

DOI: 10.1139/l00-083

Google Scholar

[10] B. G. Rabbat, H. G. Russell, Friction coefficient of steel con concrete or grout, ASCE J. Struct. Eng. 111(1985): 505-515.

DOI: 10.1061/(asce)0733-9445(1985)111:3(505)

Google Scholar

[11] M. Corradi, A. Borri, Fir and chestnut timber beams reinforced with GFRP pultruded elements, Compos. Part B 38 (2007) 172-181.

DOI: 10.1016/j.compositesb.2006.07.003

Google Scholar

[12] C. Casalegno, S. Russo, Structural joints made by FRP and steel: a new proposal of analysis based on the progressive damage approach, Compos. Mech. Comput. Appl. Int. J. 6 (2015) 1–18.

DOI: 10.1615/compmechcomputapplintj.v6.i2.10

Google Scholar

[13] J. F. Davalos, A. Chen, B. Zou, Stiffness and Strength Evaluations of a Shear Connection System for FRP Bridge Decks to Steel Girders, J Compos. Constr 15 (2011): 441-450.

DOI: 10.1061/(asce)cc.1943-5614.0000162

Google Scholar

[14] G. Woltman, D. Tomlinson, A. Fam, Investigation of various GFRP shear connectors for insulated precast concrete sandwich wall panels, J. Compos. Constr. 17 (2013) 711-721.

DOI: 10.1061/(asce)cc.1943-5614.0000373

Google Scholar

[15] C. Casalegno, S. Russo, F. Sciarretta, Experimental analysis of failure mechanisms in connections between masonry and FRP profiles [under review].

Google Scholar

[16] EN 1052-3, Methods of test for masonry – Part 3: Determination of initial shear strength, Comité Europeén de Normation, (2007).

Google Scholar

[17] DIANA – Finite Element Analysis, User's Manual release 9. 6, first ed., TNO DIANA bv, Delft, The Netherlands, (2014).

Google Scholar

[18] National Research Council (CNR), Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati, Technical Document DT 200 R1 (2013) [in Italian].

Google Scholar

[19] G. Magenes, G. M. Calvi, Cyclic behavior of brick masonry walls, in: Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, 1992, pp.3517-3522.

Google Scholar

[20] N. Mojsilović, M. Krucker, Shear tests on masonry elements with damp-proof course membrane, in: Proceedings 15th International Brick and Block Masonry Conference, Florianopolis, Brazil, 3-6 June 2012, Paper 7A3.

DOI: 10.1016/j.conbuildmat.2012.04.033

Google Scholar

[21] F. Da Porto, E. Garbin, F. Mosele, C. Modena, Murature realizzate con diverse tipologie di giunto, Costruire in Laterizio 114 (2006): 54-61 [in Italian].

Google Scholar

[22] M. Marino, F. Neri, A. De Maria, A. Borri, Experimental data of friction coefficient for some types of masonry and its correlation with an Index of Quality Masonry (IQM), in: Proceedings 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, 25-29 August (2014).

Google Scholar

[23] M. A. Hossain, Y. Z. Totoev, M. J. Masia, Friction on mortar-less joints in semi interlocking masonry, in: C. Modena, F. da Porto, M. R. Valluzzi (Eds. ), Brick and Block Masonry – Trends, Innovations and Challenges, Taylor & Francis Group, London, (2016).

DOI: 10.1201/b21889-203

Google Scholar

[24] H. M. Diab, O. A. Farghal, Bond strength and effective bond length of FRP sheets/plates bonded to concrete considering the type of adhesive layer, Compos. Part B 58 (2014): 618–624.

DOI: 10.1016/j.compositesb.2013.10.075

Google Scholar