Synthesis of MIL-125/Graphene Oxide Composites and Hydrogen Storage Properties

Article Preview

Abstract:

Metal-organic frameworks (MOFs: MIL-125)-graphene oxide (GO) composite (MO) was synthesized by solvothermal method. All the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Then their hydrogen storage properties were systematically tested under 1 bar and 77K. The composite material MO-1 possesses higher surface area than the parent material MIL-125 and shows a remarkable H2 capacity up to 2.5 wt% (38% increases vs. MIL-125).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

683-687

Citation:

Online since:

January 2017

Export:

Price:

[1] X.L. Si, C.L. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z.B. Li, L. X Sun., F. Xu, Z. Gabelica: Energy & Environmental Science, Vol. 4 (2011) No. 11, p.4522.

Google Scholar

[2] X.L. Si, L.X. Sun, F. Xu, C.L. Jiao, F. Li, S.S. Liu, J. Zhang, L.F. Song, C.H. Jiang , S. Wang: International Journal of Hydrogen Energy, Vol. 36 (2011) No. 11, p.6698.

Google Scholar

[3] R. Ricco, L. Malfatti, M. Takahashi, A.J. Hill, P. Falcaro: Journal of Materials Chemistry A, Vol. 1 (2013) No. 42, p.13033.

Google Scholar

[4] J.D. Rocca, D. Liu, and W. Lin: Accounts of Chemical Research, Vol. 44 (2011) No. 10, p.957.

Google Scholar

[5] J.R. Long, O.M. Yaghi: Chemical Society Reviews, Vol. 38 (2009) No. 5, p.1213.

Google Scholar

[6] Myunghyun Paik Suh, Hye Jeong Park, Thazhe Kootteri Prasad, and Dae-Woon Lim: Chemical Reviews, Vol. 112 (2012) No. 2, p.782.

Google Scholar

[7] D.R. Dreyer, S.J. Park C.W. Bielawski and R.S. Ruoff: Chemical Society Reviews, Vol. 39 (2010) No. 1, p.228.

Google Scholar

[8] M. Jahan, Q. B., J.X. Yang, K.P. Loh: Journal American Chemical Society, Vol. 132 (2010) No. 41, p.14487.

Google Scholar

[9] C. Petit, B. Mendoza, D. O'Donnell, T.J. Bandosz: Langmuir, Vol. 27 (2011) No. 16, p.10234.

Google Scholar

[10] W.S. Hummers, R.E. Offeman: Journal of the American Chemical Society, Vol. 80 (1958) No. 6, p.1339.

Google Scholar

[11] Se-Na Kim, Jun Kim, Hee-Young Kim, Hye-Young Cho, Wha-Seung Ahn: Catalysis Today, Vol. 204, p.85.

Google Scholar

[12] S. Liu, L.X. Sun, F. Xu, J. Zhang, C.L. Jiao, F. Li, Z.B. Li, S. Wang, Z.Q. Wang, X. Jiang: Energy & Environmental Science, Vol. 6 (2013) No. 3, p.818.

Google Scholar

[13] S.S., D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.B.T. Nguyen , R.S. Ruoff: Carbon, Vol. 45 (2007), p.1558.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[14] E.P. Barrett, L.G. Joyner, P.P. Halenda: Journal American Chemical Society, Vol. 73 (1951) No. 1, p.373.

Google Scholar