Bioceramics and Biocomposites from Marine Sources

Article Preview

Abstract:

Advanced technologies and biocomplexity offer new dimensions for the development of novel medical products obtained from marine resources. Because several biomaterials can be derived from synthetic or natural sources, this area offers a very large variety of natural species that may be used for biomedical applications, including tissue engineering, drug delivery and surgery. The marine environment is a natural collector of porous materials the porosity of which varies from submicron to millimeter. The production of hydroxyapatite from synthetic chemicals can sometimes lead to a costly work and sea creatures may represent an alternative way to produce very fine and even nano-structured biomaterials. Rapana venosa is, in this sense, a study marine organism because its shell is made of aragonite that can be converted into bioceramic powder, which can subsequently be used for biomedical applications. The indirect use of marine organisms was tackled according to different routes: synthetic precursor casts using biomorphic moulds, chemical conversion of the inorganic marine matrix into a biomorphic substitute, and self-assembly of nanoparticles via chemical and molecular interactions. The chemical conversion is the most developed practice to obtain biomaterials for bone regeneration. It can be realized by hydrothermal synthesis or hydrothermal hot pressing. Both methods suppose a pre-treatment to remove the organic matrix of the skeleton. Hydrothermal synthesis involves heating the marine skeletons under alkaline conditions at a specific temperature pressure in either a reaction vessel or an autoclave. The temperature and pressure have an important significance concerning material structure properties of final product in terms of degree of crystallinity, grain size, and specific surface area. The temperature has an importance on the crystallite size (50-150 nm), and in general, the optimal temperature ranges between 200-250°C. Hydrothermal hot pressing is the process used in the fabrication of some commercial bone substitutes from coral sources and involves the solidification of synthetic hydroxyapatite powder. Some experimental results related to the processing of Rapana venosa snail shell in order to obtain hydroxyapatite for medical applications are presented at the end. In conclusion, preliminary results obtained by us show that this snail shell appears to be suitable to be used as raw material for obtaining hydroxyapatite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-292

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] E. Griesshaber, W.W. Schmahl, R. Neuser, T. Pettke, M. Blum, J. Mutterlose, U. Brand, Crystallographic texture and microstructure of terebratulide brachiopod shell calcite: an optimized materials design with hierarchical architecture, Am. Mineral. 92 (2007).

DOI: 10.2138/am.2007.2220

Google Scholar

[2] D. Green, D. Howard, X. Yang, M. Kelly, R.O.C. Oreffo, Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation, Tissue Eng. 9 (2003) 1159–1166.

DOI: 10.1089/10763270360728062

Google Scholar

[3] A.L. Laza, M. Jaber, J. Miehe-Brendle, H. Demais, H. Le Deit, L. Delmotte, L. Vidal, Green nanocomposites: synthesis and characterization, J. Nanosci. Nanotechnol. 7 (2007) 3207–3213.

DOI: 10.1166/jnn.2007.698

Google Scholar

[4] J.A. Oliveira, J.M.R. Grech, I.B. Leonor, J.F. Mano, R.L. Reis, Calcium-phosphate derived from mineralized algae for bone tissue engineering applications, Mater. Lett. 61 (2007) 3495–3499.

DOI: 10.1016/j.matlet.2006.11.099

Google Scholar

[5] M. Lahaye, A. Robic, Structure and functional properties of ulvan, a polysaccharide from green seaweeds, Biomacromolecules, 8 (2007) 1765–1774.

DOI: 10.1021/bm061185q

Google Scholar

[6] M. Martina, G. Subramanyam, J.C. Weaver, D.W. Hutmacher, D.E. Morse, S. Valiyaveettil, Developing macroporous bicontinuous materials as scaffolds for tissue engineering, Biomaterials 26 (2005) 5609–5616.

DOI: 10.1016/j.biomaterials.2005.02.011

Google Scholar

[7] M. Bachle, U. Hubner, R.J. Kohal, J.S. Han, M. Wiedmann-Al-Ahmad, Structure and in vitro cytocompatibility of the gastropod shell of Helix pomatia, Tissue Cell. 38 (2006) 337–344.

DOI: 10.1016/j.tice.2006.08.004

Google Scholar

[8] R. Hou, F.L. Chen, Y.W. Yang, X.B. Cheng, Z. Gao, H.W.O. Yang, W. Wu, T.Q. Mao, Comparative study between coral-mesenchymal stem cells–RHBMP–2 composite and autobone- graft in rabbit critical-sized cranial defect model, J. Biomed. Mater. Res. Part A 80A (2007).

DOI: 10.1002/jbm.a.30840

Google Scholar

[9] S. Kujala, T. Raatikainen, J. Ryhanen, O. Kaarela, P. Jalovaara, Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions - a preliminary study, Scand. J. Surg. 91 (2002) 186–190.

DOI: 10.1177/145749690209100210

Google Scholar

[10] J.J. Kim, H.J. Kim, K.S. Lee, Evaluation of biocompatibility of porous hydroxyapatite developed from edible cuttlefish bone, Key Eng. Mat. 20 (2008) 155–158.

Google Scholar

[11] S.A. Clarke, P. Walsh, C.A. Maggs, F. Buchanan, Designs from the deep: marine organisms for bone tissue engineering, Biotechnol. Adv. 29 (2011) 610-617.

DOI: 10.1016/j.biotechadv.2011.04.003

Google Scholar

[12] E. Cunningham, N. Dunne, G. Walker, C. Maggs, R. Wilcox, F. Buchanan, Hydroxyapatite bone substitutes developed via replication of natural marine sponges, J. Mater. Sci. Mater. Med. 21 (2010) 2255–2261.

DOI: 10.1007/s10856-009-3961-4

Google Scholar

[13] D.J. Faulkner, Marine natural products, Nat. Prod. Rep. 18 (2001) 1-49.

Google Scholar

[14] A. Meyers Marc, P.Y. Chen, A. Yu-Min Lin, Y. Seki, Biological materials: Structure and mechanical properties, Prog. Mater. Sci. 53 (2008) 1–206.

Google Scholar

[15] J.P. Rast, L.C. Smith, M. Loza-Coll, T. Hibino, G.W. Litman, Genomic insights into the immune system of the sea urchin, Science 314 (2006) 952–956.

DOI: 10.1126/science.1134301

Google Scholar

[16] S. Ravichandran, K. Kathiresan, H. Balaram, Anti-malarials from marine sponges, Biotechnol. Mol. Biol. Rev. 2 (2007) 33-38.

Google Scholar

[17] K.S. Vecchio, X. Zhang, J.B. Massie, M. Wang, C.W. Kim, Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants, Acta Biomater. 3 (2007) 785–793.

DOI: 10.1016/j.actbio.2007.03.009

Google Scholar

[18] M. Bohner, Y. Loosli, G. Baroud, D. Lacroix, Commentary: Deciphering the link between architecture and biological response of a bone graft substitute, Acta Biomater. 7 (2011) 478–484.

DOI: 10.1016/j.actbio.2010.08.008

Google Scholar

[19] K.A. Hing, B. Annaz, S. Saeed, P.A. Revell, T. Buckland, Microporosity enhances bioactivity of synthetic bone graft substitutes, J. Mater. Sci. Mater. Med. 16 (2005) 467–475.

DOI: 10.1007/s10856-005-6988-1

Google Scholar

[20] B. Sharma, J.H. Elisseeff, Engineering structurally organized cartilage and bone tissues, Ann. Biomed. Eng. 32 (2004) 148–159.

DOI: 10.1023/b:abme.0000007799.60142.78

Google Scholar

[21] F. Zhang, J. Chang, J. Lu, K. Lin, C. Ning, Bioinspired structure of bioceramics for bone regeneration in load-bearing sites, Acta Biomater. 3 (2007) 896–90.

DOI: 10.1016/j.actbio.2007.05.008

Google Scholar

[22] A.M. Clark, Natural products as a resource for new drugs, Pharm. Res. 13 (1996) 1133-1141.

Google Scholar

[23] E.L. Cooper, K. Hirabayashi, K.B. Strychar, P.W. Sammarco, Corals and their potential applications to integrative medicine, Evid. Based Complement. Alternat. Med. Vol. 2014 (2014) 1-9.

DOI: 10.1155/2014/184959

Google Scholar

[24] M.A. Knackstedt C.H. Arns, T.J. Senden, K. Gross, Structure and properties of clinical coralline implants measured via 3D imaging and analysis, Biomaterials 27 (2006) 2776–2786.

DOI: 10.1016/j.biomaterials.2005.12.016

Google Scholar

[25] O. Gunduz, Y.M. Sahin, S. Agathopoulos, B. Ben-Nissan, F.N. Oktar, A new method for fabrication of nanohydroxyapatite and TCP from the sea snail Cerithium vulgatum, J. Nanomater. (2014) 1-6.

DOI: 10.1155/2014/382861

Google Scholar

[26] G. Pastorino, G. Darrigan, Pomacea lineata,. IUCN Red List of Threatened Species. Version 2013. 2., International Union for Conservation of Nature, (2014).

DOI: 10.2305/iucn.uk.2011-2.rlts.t189783a8768250.en

Google Scholar

[27] R.K. Jha, X. Zi-Rong, Biomedical compounds from marine organisms, Mar. Drugs 2 (2004) 123-146.

DOI: 10.3390/md203123

Google Scholar

[28] B.M. Holzapfel, J.C. Reichert, J.T. Schantz, U. Gbureck, L. Rackwitz, U. Noth, F. Jakob, M. Rudert, J. Groll, D.W. Hutmacher, How smart do biomaterials need to be? A translational science and clinical point of view, Adv. Drug Deliv. Rev. 65 (2013).

DOI: 10.1016/j.addr.2012.07.009

Google Scholar

[29] B.H. Fellah, O. Gauthier, P. Weiss, D. Chappard, P. Layrolle, Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model, Biomaterials 29 (2008) 1177–1188.

DOI: 10.1016/j.biomaterials.2007.11.034

Google Scholar

[30] E. Arzt, Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos, Mater. Sci. Eng. C 26 (2006) 1245–1250.

DOI: 10.1016/j.msec.2005.08.033

Google Scholar

[31] Y. Aisa, Y. Miyakawa, T. Nakazato, H. Shibata, K. Saito, Y. Ikeda, M. Kizaki, Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways, Am. J. Hematol. 78 (2005) 7–14.

DOI: 10.1002/ajh.20182

Google Scholar

[32] M. Mattioli-Belmonte, A. Gigante, R.A.A. Muzzarelli, R. Politano, A. De Benedittis, N. Specchia, A. Buffa, G. Biagini, F. Greco, N, N-Dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage, Med. Biol. Eng. Comp. 37 (1999).

DOI: 10.1007/bf02513279

Google Scholar

[33] E. Song, S.Y. Kim, T. Chun, H.J. Byun, Y.M. Lee, Collagen scaffolds derived from a marine source and their biocompatibility, Biomaterials 27 (2006) 2951–2961.

DOI: 10.1016/j.biomaterials.2006.01.015

Google Scholar

[34] I. Paterson, E.A. Anderson, The renaissance of natural products as drug candidates, Science 310 (2005) 451-453.

DOI: 10.1126/science.1116364

Google Scholar

[35] T. Barsby, Drug discovery and sea hares: bigger is better, Trends Biotechnol. 24 (2006) 1-3.

DOI: 10.1016/j.tibtech.2005.11.001

Google Scholar

[36] D.M. Roy, S.K. Linnehan, Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange, Nature 247 (1974) 220–222.

DOI: 10.1038/247220a0

Google Scholar

[37] R.A. White, J.N. Weber, E.W. White, Replamineform: a new process for preparing porous ceramic, metal and polymer prosthetic materials, Science 176 (1972) 922-924.

DOI: 10.1126/science.176.4037.922

Google Scholar

[38] W.F. De Jong, La substance minerale dans les os, Rec. Trav. Chim., 45 (1926) 445-448.

DOI: 10.1002/recl.19260450613

Google Scholar

[39] K. Hosoi, T. Hashida, H. Takahashi, N. Yamasaki, T. Korenaga, New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method, J. Am. Ceram. Soc. 79 (1996) 2771–2774.

DOI: 10.1111/j.1151-2916.1996.tb09048.x

Google Scholar

[40] J. Hu, J.J. Russell, B. Ben-Nissan, R. Vago, Production and analysis of hydroxyapatite from australian corals via hydrothermal process, J. Mater. Sci. Lett. 20 (2001) 85–87.

Google Scholar

[41] H. Ivankovic, E. Tkalcec, S. Orlic, G.G. Ferrer, Z. Schauperl, Hydroxyapatite formation from cuttlefish bones: kinetics, J. Mater. Sci. Mater. Med. 21 (2010) 2711–2722.

DOI: 10.1007/s10856-010-4115-4

Google Scholar

[42] S. Jinawath, D. Pongkao, M. Yoshimura, Hydrothermal synthesis of hydroxyapatite from natural source, J. Mater. Sci. Mater. Med. 13 (2002) 491–494.

Google Scholar

[43] M. Jordanova-Spassova, US Patent 0114755 A1 (2002).

Google Scholar

[44] A. Kasioptas, T. Geisler, C.V. Putnis, C. Perdikouri, A. Putnis, Crystal growth of apatite by replacement of an aragonite precursor, J. Cryst. Growth 312 (2010) 2431–2440.

DOI: 10.1016/j.jcrysgro.2010.05.014

Google Scholar

[45] L.S. Ozyegin, F. Sima, C. Ristoscu, I.A. Kiyici, I. Mihailescu, O. Meydanoglu, S. Agathopoulos, F.N. Oktar, Sea snail: An alternative source for nano-bioceramic production, Key Eng. Mat. 493-494 (2011) 781-786.

DOI: 10.4028/www.scientific.net/kem.493-494.781

Google Scholar

[46] F. Marchegiani, E. Cibej, P. Vergni, G. Tosi, S. Fermani, G. Falini, Hydroxyapatite synthesis from biogenic calcite single crystals into phosphate solutions at ambient conditions, J. Cryst. Growth 311 (2009) 4219–4225.

DOI: 10.1016/j.jcrysgro.2009.07.010

Google Scholar

[47] E. White, E.C. Shors, US Patent 4976736 A (1989).

Google Scholar

[48] H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials, Prog. Mater. Sci. 54 (2009) 1059–1100.

DOI: 10.1016/j.pmatsci.2009.05.001

Google Scholar

[49] R.T. Chiroff, E.W. White, J.N. Weber, D.M. Roy, Tissue ingrowth of replamineform implants, J. Biomed. Mater. Res. 9 (1975) 29–45.

DOI: 10.1002/jbm.820090407

Google Scholar

[50] S.M. De Paula, M.F.G. Huila, K. Araki, H.E. Toma, Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media, Micron 41 (2010).

DOI: 10.1016/j.micron.2010.06.014

Google Scholar

[51] ICES. Alien Species Alert: Rapana venosa (veined welk), R. Mann, A. Occhipinti, J.M. Harding (eds) ICES Cooper. Res. Rep. No. 264, 1-14, (2004).

Google Scholar