Prediction of 3D Microstructure and Plastic Deformation Behavior in Dual-Phase Steel Using Multi-Phase Field and Crystal Plasticity FFT Methods

Article Preview

Abstract:

The plastic deformation behavior of dual-phase (DP) steel is strongly affected by its underlying three-dimensional (3D) microstructural factors such as spatial distribution and morphology of ferrite and martensite phases. In this paper, we present a coupled simulation method by the multi-phase-field (MPF) model and the crystal plasticity fast Fourier transformation (CPFFT) model to investigate the 3D microstructure-dependent plastic deformation behavior of DP steel. The MPF model is employed to generate a 3D digital image of DP microstructure, which is utilized to create a 3D representative volume element (RVE). Furthermore, the CPFFT simulation of tensile deformation of DP steel is performed using the 3D RVE. Through the simulations, we demonstrate the stress and strain partitioning behaviors in DP steel depending on the 3D morphology of DP microstructure can be investigated consistently.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

570-574

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] H. Hasegawa, K. Kawamura, T. Urabe, Y. Hosoya, Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets, ISIJ International 44 (2004) 603-609.

DOI: 10.2355/isijinternational.44.603

Google Scholar

[2] X. Sun, K. S. Choi, W. N. Liu, M. A. Khaleel, Prediction failure modes and ductility of dual phase steels using plastic strain localization, International Journal of Plasticity 25 (2009) 1888-(1909).

DOI: 10.1016/j.ijplas.2008.12.012

Google Scholar

[3] A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, W. Bleck, Correlation between 2D and 3D flow curve modeling of DP steels using a microstructure-based RVE approach, Materials Science and Engineering A, 560 (2013) 129-139.

DOI: 10.1016/j.msea.2012.09.046

Google Scholar

[4] C. C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, D. Raabe, Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys, Acta Materialia 81 (2014) 386-400.

DOI: 10.1016/j.actamat.2014.07.071

Google Scholar

[5] C. C. Tasan, J. P. M. Hoefnagels, M. Diehl, D. Yan, F. Roters, D. Raabe, Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations, International Journal of Plasticity 63 (2014).

DOI: 10.1016/j.ijplas.2014.06.004

Google Scholar

[6] I. Stainbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D 134 (1999) 385-393.

DOI: 10.1016/s0167-2789(99)00129-3

Google Scholar

[7] A. Yamanaka, T. Takaki, Y. Tomita, Simulation of austenite-to-ferrite transformation in deformed austenite by crystal plasticity finite element method, ISIJ International 52 (2012) 659-668.

DOI: 10.2355/isijinternational.52.659

Google Scholar

[8] P. Eisenlohr, M. Diehl, R. A. Lebensohn, F. Roters, A spectral method solution to crystal elsto-viscoplasticity at finite strains, International Journal of Plasticity 46 (2013) 37-53.

DOI: 10.1016/j.ijplas.2012.09.012

Google Scholar

[9] F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, D. Raabe, DAMASK: the Dusseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver, Procedia IUTAM 3 (2012) 3-10.

DOI: 10.1016/j.piutam.2012.03.001

Google Scholar

[10] D. Peirce, R. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metallurgica 30 (1982) 1087-1119.

DOI: 10.1016/0001-6160(82)90005-0

Google Scholar

[11] J. Kadkhodapour, A. Butz, S. Ziaei-Rad, S. Schmauder, A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model, International Journal of Plasticity 27 (2011) 1103-1125.

DOI: 10.1016/j.ijplas.2010.12.001

Google Scholar