Gelatin-PVP Hydrogels with Potential Skin Grafts Applications

Article Preview

Abstract:

This work presents the synthesis and characterization of natural-synthetic hydrogels based on gelatin (Gel) and polyvinylpyrrolidone (PVP), with potential for skin grafts applications. The natural component, Gel insures the biocompatibility and biodegradability of the bicomponent system [1], while the synthetic counterpart, PVP, is a physiologic inert component, extensively used in medicine due to its water affinity and due to its capacity of confer elasticity to films and membranes with potential applications in skin grafts [2]. The obtained hydrogels were subjected to morpho-structural analysis and rheological and mechanical tests (traction). The water affinity of the systems was estimated and their capacity to generate porous substrates through freeze-drying was evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-46

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] I.C. Stancu, A. Lungu, D. M. Dragusin, E. Vasile, C. Damian, H. Iovu, Porous Gelatin-Alginate-Polyacrylamide Scaffolds with Interpenetrating Network Structure: Synthesis and Characterization, Soft. Mater. 11 (2013) 384-393.

DOI: 10.1080/1539445x.2011.642091

Google Scholar

[2] E.S. Dragan, Design and applications of interpenetrating polymer network hydrogels. A review, Chem. Eng. J. 243 (2014) 572-590.

DOI: 10.1016/j.cej.2014.01.065

Google Scholar

[3] S. Böttcher-Haberzeth, T. Biedermann, E. Reichmann, Tissue engineering of skin, Burns, 36 (2010), 450-460.

DOI: 10.1016/j.burns.2009.08.016

Google Scholar

[4] A.D. Metcalfe, M.W. Ferguson, Bioengineering skin using mechanisms of regeneration and repair, Biomaterials 28 (2007) 5100-5113.

DOI: 10.1016/j.biomaterials.2007.07.031

Google Scholar

[5] H. Le Cocq, P.R.W. Stanley, Closing the gap: skin grafts and flaps, Surgery, 29 (2011), 502-506.

DOI: 10.1016/j.mpsur.2011.06.021

Google Scholar

[6] C. Pham, J. Greenwood, H. Cleland, P. Woodruff, G. Maddern, Bioengineered skin substitutes for the management of burns: A systematic review. Burns, 33 (2007) 946-957.

DOI: 10.1016/j.burns.2007.03.020

Google Scholar

[7] T.R. Hayes, B. Su, Wound dressings, in Electrospinning for Tissue Regeneration, Woodhead Publishing, 2011, pp.317-339.

DOI: 10.1533/9780857092915.2.317

Google Scholar

[8] F. Ferrari,M. Bertoni, M.C. Bonferoni, S. Rossi, C. Caramella, M.J. Waring , Comparative evaluation of hydrocolloid dressings by means of water uptake and swelling force measurements: II. International Journal of Pharmaceutics, Int. J. Pharm, 11 (1995).

DOI: 10.1016/0378-5173(94)00301-k

Google Scholar

[9] F.T. Martin, J.B. O'Sullivan, P.J. Regan, J. McCann, J.L. Kelly, Hydrocolloid dressing in pediatric burns may decrease operative intervention rates, J Pediatr Surg, 45 (2010), 600-605.

DOI: 10.1016/j.jpedsurg.2009.09.037

Google Scholar

[10] S.V. Smirnov, M.V. Shakhlamov, M.A. Litinsky, D.V. Yanshin, A.V. Sachkov, V.N. Obolensky, Polyurethane foam covering for wounds, burns and ulcers, Wound medicine, 2-3 (2013), 6-8.

DOI: 10.1016/j.wndm.2013.10.001

Google Scholar

[11] H.V. Pawar, J. Tetteh, J.S. Boateng, Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac, Colloid Surface B, 102 (2013), 102-110.

DOI: 10.1016/j.colsurfb.2012.08.014

Google Scholar

[12] T.W. Wong, N.A. Ramli, Carboxymethylcellulose film for bacterial wound infection control and healing, Carbohyd Polym, 112 (2014), 367-375.

DOI: 10.1016/j.carbpol.2014.06.002

Google Scholar

[13] A. Serafim, I.C. Stancu, C. Tucureanu, D.G. Petre, D.M. Dragusin, A. Salageranu, S. Van Vlierberghe, P. Dubruel, One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design, New J Chem, 38 (2014).

DOI: 10.1039/c4nj00161c

Google Scholar

[14] A. Serafim, D.M. Dragusin, T. Zecheru, P. Dubruel, D. Petre, L.T. Ciocan, E. Vasile, I.C. Stancu, Gelatin hydrogels: Effect of ethylene oxide based synthetic crosslinking agents on the physico-chemical properties, Dig J Nanomater Bios, 8 (2013).

Google Scholar

[15] A. Serafim, D.M. Dragusin, L.M. Butac, D.S. Vasilescu, P. Dubruel, I.C. Stancu, New hydrogels based on gelatin and acrylamide, U.P.B. Sci. Bull., Series B, 75 (2013).

Google Scholar

[16] A. Patel, K. Mequanint, Hydrogel Biomaterials, in Biomedical Engineering - Frontieres and chalanges, 2011, Croatia.

Google Scholar

[17] N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur J Pharm Biopharm, 50 (2000), 27-46.

Google Scholar

[18] I.C. Stancu, D.M. Dragusin, E. Vasile, R. Trusca, I. Antoniac, D.S. Vasilescu, Porous calcium alginate-gelatin interpenetrated matrix and its biomineralization potential, J Mater Sci Mater Med, 22 (2011), 451-60.

DOI: 10.1007/s10856-011-4233-7

Google Scholar

[19] J. Zhu, J. Hu, R.E. Marchant, Biomimetic hydrogels as scaffolds for tissue-engineering applications, in Biomimetic Biomaterials, Woodhead Publishing, 2013, pp.238-275.

DOI: 10.1533/9780857098887.2.238

Google Scholar

[20] E. Di Giuseppe, F. Funiciello, F. Corbi, G. Ranalli, G. Mojoli, Gelatins as rock analogs: A systematic study of their rheological and physical properties, Tectonophysics, 473 (2009), 391-403.

DOI: 10.1016/j.tecto.2009.03.012

Google Scholar